Bypassing sluggishness: SWAP algorithm and glassiness in high dimensions.

Journal Article (Journal Article)

The recent implementation of a swap Monte Carlo algorithm (SWAP) for polydisperse glass forming mixtures bypasses computational sluggishness and closes the gap between experimental and simulation timescales in physical dimensions d=2 and 3. Here, we consider suitably optimized systems in d=2,3,⋯,8 to obtain insights into the performance and underlying physics of SWAP. We show that the speedup obtained decays rapidly with increasing the dimension. SWAP nonetheless delays systematically the onset of the activated dynamics by an amount that remains seemingly finite in the limit d→∞. This shows that the glassy dynamics in high dimensions d>3 is now computationally accessible using SWAP, thus opening the door for the systematic consideration of finite-dimensional deviations from the mean-field description.

Full Text

Duke Authors

Cited Authors

  • Berthier, L; Charbonneau, P; Kundu, J

Published Date

  • March 2019

Published In

Volume / Issue

  • 99 / 3-1

Start / End Page

  • 031301 -

PubMed ID

  • 30999459

Electronic International Standard Serial Number (EISSN)

  • 2470-0053

International Standard Serial Number (ISSN)

  • 2470-0045

Digital Object Identifier (DOI)

  • 10.1103/physreve.99.031301


  • eng