A high-volumetric-capacity and high-areal-capacity ZnCo2O4 anode for Li-ion batteries enabled by a robust biopolymer binder

Published

Journal Article

© 2018 The Royal Society of Chemistry. Constructing high-areal-capacity anodes with high loading for Li-ion batteries is still an enormous challenge, due to the drastic volume change of large-capacity anode materials during cycling. The conventional PVDF binder system fails to withstand the degradation of high-loading electrodes. Therefore, advanced binders are urgently required. Herein, for the first time, the guar gum (GG) biopolymer has been exploited as a robust binder for micro-sized ZnCo2O4 (ZCO) anode materials. Because of its robust mechanical properties and strong interactions with ZCO, the cycling stability of the ZCO anode has been significantly improved with a capacity of 412 mA h g-1 after 600 cycles at 1200 mA g-1. More importantly, the ZCO can act as a "crosslinking agent" to in situ form a robust network with GG, which efficiently maintains the electrode structure stability. Hence, a ZCO anode with an ultrahigh loading of 6.73 mg cm-2 can be achieved and deliver a high areal capacity of 5.6 mA h cm-2. Simultaneously, benefiting from the high tap density of micro-ZCO, the ZCO anode gives a high volumetric capacity of 1179 mA h cm-3. This study will make a significant contribution to accelerating the progress of designing high-areal-capacity anodes.

Full Text

Duke Authors

Cited Authors

  • Liu, J; Xuan, Y; Galpaya, DGD; Gu, Y; Lin, Z; Zhang, S; Yan, C; Feng, S; Wang, L

Published Date

  • January 1, 2018

Published In

Volume / Issue

  • 6 / 40

Start / End Page

  • 19455 - 19462

Electronic International Standard Serial Number (EISSN)

  • 2050-7496

International Standard Serial Number (ISSN)

  • 2050-7488

Digital Object Identifier (DOI)

  • 10.1039/c8ta07840h

Citation Source

  • Scopus