Forces drive basement membrane invasion in Caenorhabditis elegans .

Journal Article (Journal Article)

During invasion, cells breach basement membrane (BM) barriers with actin-rich protrusions. It remains unclear, however, whether actin polymerization applies pushing forces to help break through BM, or whether actin filaments play a passive role as scaffolding for targeting invasive machinery. Here, using the developmental event of anchor cell (AC) invasion in Caenorhabditis elegans , we observe that the AC deforms the BM and underlying tissue just before invasion, exerting forces in the tens of nanonewtons range. Deformation is driven by actin polymerization nucleated by the Arp2/3 complex and its activators, whereas formins and cross-linkers are dispensable. Delays in invasion upon actin regulator loss are not caused by defects in AC polarity, trafficking, or secretion, as appropriate markers are correctly localized in the AC even when actin is reduced and invasion is disrupted. Overall force production emerges from this study as one of the main tools that invading cells use to promote BM disruption in C. elegans .

Full Text

Duke Authors

Cited Authors

  • Cáceres, R; Bojanala, N; Kelley, LC; Dreier, J; Manzi, J; Di Federico, F; Chi, Q; Risler, T; Testa, I; Sherwood, DR; Plastino, J

Published Date

  • November 2018

Published In

Volume / Issue

  • 115 / 45

Start / End Page

  • 11537 - 11542

PubMed ID

  • 30348801

Pubmed Central ID

  • PMC6233148

Electronic International Standard Serial Number (EISSN)

  • 1091-6490

International Standard Serial Number (ISSN)

  • 0027-8424

Digital Object Identifier (DOI)

  • 10.1073/pnas.1808760115


  • eng