Forces drive basement membrane invasion in Caenorhabditis elegans .
Journal Article (Journal Article)
During invasion, cells breach basement membrane (BM) barriers with actin-rich protrusions. It remains unclear, however, whether actin polymerization applies pushing forces to help break through BM, or whether actin filaments play a passive role as scaffolding for targeting invasive machinery. Here, using the developmental event of anchor cell (AC) invasion in Caenorhabditis elegans , we observe that the AC deforms the BM and underlying tissue just before invasion, exerting forces in the tens of nanonewtons range. Deformation is driven by actin polymerization nucleated by the Arp2/3 complex and its activators, whereas formins and cross-linkers are dispensable. Delays in invasion upon actin regulator loss are not caused by defects in AC polarity, trafficking, or secretion, as appropriate markers are correctly localized in the AC even when actin is reduced and invasion is disrupted. Overall force production emerges from this study as one of the main tools that invading cells use to promote BM disruption in C. elegans .
Full Text
Duke Authors
Cited Authors
- Cáceres, R; Bojanala, N; Kelley, LC; Dreier, J; Manzi, J; Di Federico, F; Chi, Q; Risler, T; Testa, I; Sherwood, DR; Plastino, J
Published Date
- November 2018
Published In
Volume / Issue
- 115 / 45
Start / End Page
- 11537 - 11542
PubMed ID
- 30348801
Pubmed Central ID
- PMC6233148
Electronic International Standard Serial Number (EISSN)
- 1091-6490
International Standard Serial Number (ISSN)
- 0027-8424
Digital Object Identifier (DOI)
- 10.1073/pnas.1808760115
Language
- eng