Nested Scales of Spatial and Temporal Variability of Soil Water Content Across a Semiarid Montane Catchment

Published

Journal Article

©2018. American Geophysical Union. All Rights Reserved. Topographic redistribution of water has been represented by various terrain metrics (e.g., topographic wetness index, slope, and upslope accumulated area). This type of landscape characterization has promoted the use of terrain metrics to inform how spatial patterns of soil volumetric water content (VWC) influence streamflow, ecological processes, and associated nutrient fluxes. However, evaluation of what these static terrain metrics reflect has only been accomplished in a few catchments. Additionally, previous research suggests that relationships between topographic metrics and VWC could be different across catchments through time. Here we measured VWC from snowmelt through summer drydown across a semiarid montane catchment. Using a spatially nested sampling design, we assessed the spatiotemporal variability of VWC from plot (tens of meters) to landscape scales (hundreds of meters). Variance of riparian area VWC increased as the catchment dried, while upland variance decreased, highlighting the utility of delineating distinct landscape units when considering spatial variability of moisture, rather than calculating statistics across the landscape as a whole. In contrast to previous research, we found that the relationship between VWC and topographic metrics persisted through the dry catchment state, suggesting that patterns of topographic redistribution of water during snowmelt continued to influence dry season VWC despite variability in plot scale vertical processes (e.g., evapotranspiration). Future research should focus on resolving the relationship between catchment moisture state and VWC variability as a function of wetness state, seasonality, and magnitude of precipitation, topography, and soil depth.

Full Text

Duke Authors

Cited Authors

  • Kaiser, KE; McGlynn, BL

Published Date

  • October 1, 2018

Published In

Volume / Issue

  • 54 / 10

Start / End Page

  • 7960 - 7980

Electronic International Standard Serial Number (EISSN)

  • 1944-7973

International Standard Serial Number (ISSN)

  • 0043-1397

Digital Object Identifier (DOI)

  • 10.1029/2018WR022591

Citation Source

  • Scopus