A numerical method for coupling the BGK model and Euler equations through the linearized Knudsen layer

Published

Journal Article

© 2019 Elsevier Inc. The Bhatnagar-Gross-Krook (BGK) model, a simplification of the Boltzmann equation, in the absence of boundary effect, converges to the Euler equations when the Knudsen number is small. In practice, however, Knudsen layers emerge at the physical boundary, or at the interfaces between the two regimes. We model the Knudsen layer using a half-space kinetic equation, and apply a half-space numerical solver [19,20] to quantify the transition between the kinetic to the fluid regime. A full domain numerical solver is developed with a domain-decomposition approach, where we apply the Euler solver and kinetic solver on the appropriate subdomains and connect them via the half-space solver. In the nonlinear case, linearization is performed upon local Maxwellian. Despite the lack of analytical support, the numerical evidence nevertheless demonstrate that the linearization approach is promising.

Full Text

Duke Authors

Cited Authors

  • Chen, H; Li, Q; Lu, J

Published Date

  • December 1, 2019

Published In

Volume / Issue

  • 398 /

Electronic International Standard Serial Number (EISSN)

  • 1090-2716

International Standard Serial Number (ISSN)

  • 0021-9991

Digital Object Identifier (DOI)

  • 10.1016/j.jcp.2019.108893

Citation Source

  • Scopus