Inelastic vibrational dynamics of CS in collision with H2 using a full-dimensional potential energy surface.

Journal Article (Journal Article)

We report a six-dimensional (6D) potential energy surface (PES) for the CS-H2 system computed using high-level electronic structure theory and fitted using a hybrid invariant polynomial method. Full-dimensional quantum close-coupling scattering calculations have been carried out using this potential for rotational and, for the first time, vibrational quenching transitions of CS induced by H2. State-to-state cross sections and rate coefficients for rotational transitions in CS from rotational levels j1 = 0-5 in the ground vibrational state are compared with previous theoretical results obtained using a rigid-rotor approximation. For vibrational quenching, state-to-state and total cross sections and rate coefficients were calculated for the vibrational transitions in CS(v1 = 1,j1) + H2(v2 = 0,j2) → CS(v1' = 0,j1') + H2(v2' = 0,j2') collisions, for j1 = 0-5. Cross sections for collision energies in the range 1 to 3000 cm-1 and rate coefficients in the temperature range of 5 to 600 K are obtained for both para-H2 (j2 = 0) and ortho-H2 (j2 = 1) collision partners. Application of the computed results in astrophysics is also discussed.

Full Text

Duke Authors

Cited Authors

  • Yang, B; Zhang, P; Qu, C; Stancil, PC; Bowman, JM; Balakrishnan, N; Forrey, RC

Published Date

  • November 2018

Published In

Volume / Issue

  • 20 / 45

Start / End Page

  • 28425 - 28434

PubMed ID

  • 30406236

Electronic International Standard Serial Number (EISSN)

  • 1463-9084

International Standard Serial Number (ISSN)

  • 1463-9076

Digital Object Identifier (DOI)

  • 10.1039/c8cp05819a


  • eng