Interphase cohesin regulation ensures mitotic fidelity after genome reduplication.

Journal Article (Journal Article)

To ensure faithful genome propagation, mitotic cells alternate one round of chromosome duplication with one round of chromosome separation. Chromosome separation failure thus causes genome reduplication, which alters mitotic chromosome structure. Such structural alterations are well documented to impair mitotic fidelity following aberrant genome reduplication, including in diseased states. In contrast, we recently showed that naturally occurring genome reduplication does not alter mitotic chromosome structure in Drosophila papillar cells. Our discovery raised the question of how a cell undergoing genome reduplication might regulate chromosome structure to prevent mitotic errors. Here, we show that papillar cells ensure mitotic fidelity through interphase cohesin regulation. We demonstrate a requirement for cohesins during programmed rounds of papillar genome reduplication known as endocycles. This interphase cohesin regulation relies on cohesin release but not cohesin cleavage and depends on the conserved cohesin regulator Pds5 . Our data suggest that a distinct form of interphase cohesin regulation ensures mitotic fidelity after genome reduplication.

Full Text

Duke Authors

Cited Authors

  • Stormo, BM; Fox, DT

Published Date

  • January 15, 2019

Published In

Volume / Issue

  • 30 / 2

Start / End Page

  • 219 - 227

PubMed ID

  • 30462577

Pubmed Central ID

  • PMC6589556

Electronic International Standard Serial Number (EISSN)

  • 1939-4586

Digital Object Identifier (DOI)

  • 10.1091/mbc.E17-10-0582


  • eng

Conference Location

  • United States