A Quantized Training Method to Enhance Accuracy of ReRAM-based Neuromorphic Systems

Published

Conference Paper

© 2018 IEEE. Deep neural networks (DNNs) are tremendously applied in artificial intelligence field. While the performance of DNNs is continuously improved by more complicated and deeper structures, the feasibility of deployment on embedded system remains as a critical problem. Neuromorphic system designs based on resistive random-access memory (ReRAM) provide an opportunity for power-efficient DNN employment. However, it encounters the challenge of limited programming resolution. A quantized training method is proposed in this paper to enhance the performance of neuromorphic systems based on ReRAM. Different from previous methods in which a dedicated regularization term is used in loss function to constrain parameter distribution, our quantized training method deals with training and quantization at the same time to alleviate the impact of limited parameter precision. Models with discrete parameters obtained after training can be directly mapped onto ReRAM devices. We implement experiments on image recognition tasks using multi-layer perceptron (MLP) and convolution neural network (CNN). The results verify that the quantized training method can approximate the accuracy of full-precision training, e.g., a two-layer MLP based on binary ReRAM only decreases the classification accuracy by 0.25% for MNIST dataset. In addition, we carefully investigate and present the importance of layer size under the ReRAM's low programming resolution, the different parameter resolution demands for convolution layer and fully connected layer, and system robustness to ReRAM variations after quantized training. The codes are available at https://github.com/qingyangqing/quantized-rram-net.

Full Text

Duke Authors

Cited Authors

  • Yang, Q; Li, H; Wu, Q

Published Date

  • April 26, 2018

Published In

Volume / Issue

  • 2018-May /

International Standard Serial Number (ISSN)

  • 0271-4310

International Standard Book Number 13 (ISBN-13)

  • 9781538648810

Digital Object Identifier (DOI)

  • 10.1109/ISCAS.2018.8351327

Citation Source

  • Scopus