Biosynthetic transition metal chalcogenide semiconductor nanoparticles: Progress in synthesis, property control and applications


Journal Article (Review)

© 2018 Elsevier Ltd Transition metal (TM) chalcogenides are a group of semiconductor materials with applications that range from antibacterial particles to thin films in energy conversion devices. Significant progress in synthetic biology combined with the benefits of low energy consumption and low toxic waste burden of “green synthesis,” have directed considerable research attention to the biosynthesis of these inorganic materials. TM chalcogenide nanoparticles (NP) can be produced by a variety of microorganisms including bacteria, fungi, algae, and yeast, as well as cell-free approaches using enzymes. Recent research shows that the size, crystal structure, and bandgap of these TM NPs can be well controlled, which has led to prototypical applications of these biosynthetic NPs in the areas of bio-remediation, bio-imaging, photocatalysis, and energy conversion. This review is the first to combine recent progress in the biosynthesis, property control, and applications of TM chalcogenide NPs.

Full Text

Duke Authors

Cited Authors

  • Feng, Y; Marusak, KE; You, L; Zauscher, S

Published Date

  • November 1, 2018

Published In

Volume / Issue

  • 38 /

Start / End Page

  • 190 - 203

Electronic International Standard Serial Number (EISSN)

  • 1879-0399

International Standard Serial Number (ISSN)

  • 1359-0294

Digital Object Identifier (DOI)

  • 10.1016/j.cocis.2018.11.002

Citation Source

  • Scopus