Unsupervised Gaussian mixture-model with expectation maximization for detecting glaucomatous progression in standard automated perimetry visual fields

Published

Journal Article

© 2016, Association for Research in Vision and Ophthalmology Inc. All rights reserved. Purpose. To validate Gaussian mixture-model with expectation maximization (GEM) and variational Bayesian independent component analysis mixture-models (VIM) for detecting glaucomatous progression along visual field (VF) defect patterns (GEM– progression of patterns (POP) and VIM-POP). To compare GEM-POP and VIM-POP with other methods. Methods. GEM and VIM models separated cross-sectional abnormal VFs from 859 eyes and normal VFs from 1117 eyes into abnormal and normal clusters. Clusters were decomposed into independent axes. The confidence limit (CL) of stability was established for each axis with a set of 84 stable eyes. Sensitivity for detecting progression was assessed in a sample of 83 eyes with known progressive glaucomatous optic neuropathy (PGON). Eyes were classified as progressed if any defect pattern progressed beyond the CL of stability. Performance of GEM-POP and VIM-POP was compared to point-wise linear regression (PLR), permutation analysis of PLR (PoPLR), and linear regression (LR) of mean deviation (MD), and visual field index (VFI). Results. Sensitivity and specificity for detecting glaucomatous VFs were 89.9% and 93.8%, respectively, for GEM and 93.0% and 97.0%, respectively, for VIM. Receiver operating characteristic (ROC) curve areas for classifying progressed eyes were 0.82 for VIM-POP, 0.86 for GEM-POP, 0.81 for PoPLR, 0.69 for LR of MD, and 0.76 for LR of VFI. Conclusions. GEM-POP was significantly more sensitive to PGON than PoPLR and linear regression of MD and VFI in our sample, while providing localized progression information. Translational Relevance. Detection of glaucomatous progression can be improved by assessing longitudinal changes in localized patterns of glaucomatous defect identified by unsupervised machine learning.

Full Text

Duke Authors

Cited Authors

  • Yousefi, S; Balasubramanian, M; Goldbaum, MH; Medeiros, FA; Zangwill, LM; Weinreb, RN; Liebmann, JM; Girkin, CA; Bowd, C

Published Date

  • May 1, 2016

Published In

Volume / Issue

  • 5 / 3

Electronic International Standard Serial Number (EISSN)

  • 2164-2591

Digital Object Identifier (DOI)

  • 10.1167/tvst.5.3.2

Citation Source

  • Scopus