Skip to main content

Structural Change Can Be Detected in Advanced-Glaucoma Eyes.

Publication ,  Journal Article
Belghith, A; Medeiros, FA; Bowd, C; Liebmann, JM; Girkin, CA; Weinreb, RN; Zangwill, LM
Published in: Invest Ophthalmol Vis Sci
July 1, 2016

PURPOSE: To compare spectral-domain optical coherence tomography (SD-OCT) standard structural measures and a new three-dimensional (3D) volume optic nerve head (ONH) change detection method for detecting change over time in severely advanced-glaucoma (open-angle glaucoma [OAG]) patients. METHODS: Thirty-five eyes of 35 patients with very advanced glaucoma (defined as a visual field mean deviation < -21 dB) and 46 eyes of 30 healthy subjects to estimate aging changes were included. Circumpapillary retinal fiber layer thickness (cpRNFL), minimum rim width (MRW), and macular retinal ganglion cell-inner plexiform layer (GCIPL) thicknesses were measured using the San Diego Automated Layer Segmentation Algorithm (SALSA). Progression was defined as structural loss faster than 95th percentile of healthy eyes. Three-dimensional volume ONH change was estimated using the Bayesian-kernel detection scheme (BKDS), which does not require extensive retinal layer segmentation. RESULTS: The number of progressing glaucoma eyes identified was highest for 3D volume BKDS (13, 37%), followed by GCPIL (11, 31%), cpRNFL (4, 11%), and MRW (2, 6%). In advanced-OAG eyes, only the mean rate of GCIPL change reached statistical significance, -0.18 μm/y (P = 0.02); the mean rates of cpRNFL and MRW change were not statistically different from zero. In healthy eyes, the mean rates of cpRNFL, MRW, and GCIPL change were significantly different from zero. (all P < 0.001). CONCLUSIONS: Ganglion cell-inner plexiform layer and 3D volume BKDS show promise for identifying change in severely advanced glaucoma. These results suggest that structural change can be detected in very advanced disease. Longer follow-up is needed to determine whether changes identified are false positives or true progression.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Invest Ophthalmol Vis Sci

DOI

EISSN

1552-5783

Publication Date

July 1, 2016

Volume

57

Issue

9

Start / End Page

OCT511 / OCT518

Location

United States

Related Subject Headings

  • Visual Fields
  • Visual Field Tests
  • Tomography, Optical Coherence
  • Severity of Illness Index
  • Retinal Ganglion Cells
  • Reproducibility of Results
  • ROC Curve
  • Optic Disk
  • Ophthalmology & Optometry
  • Nerve Fibers
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Belghith, A., Medeiros, F. A., Bowd, C., Liebmann, J. M., Girkin, C. A., Weinreb, R. N., & Zangwill, L. M. (2016). Structural Change Can Be Detected in Advanced-Glaucoma Eyes. Invest Ophthalmol Vis Sci, 57(9), OCT511–OCT518. https://doi.org/10.1167/iovs.15-18929
Belghith, Akram, Felipe A. Medeiros, Christopher Bowd, Jeffrey M. Liebmann, Christopher A. Girkin, Robert N. Weinreb, and Linda M. Zangwill. “Structural Change Can Be Detected in Advanced-Glaucoma Eyes.Invest Ophthalmol Vis Sci 57, no. 9 (July 1, 2016): OCT511–18. https://doi.org/10.1167/iovs.15-18929.
Belghith A, Medeiros FA, Bowd C, Liebmann JM, Girkin CA, Weinreb RN, et al. Structural Change Can Be Detected in Advanced-Glaucoma Eyes. Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT511–8.
Belghith, Akram, et al. “Structural Change Can Be Detected in Advanced-Glaucoma Eyes.Invest Ophthalmol Vis Sci, vol. 57, no. 9, July 2016, pp. OCT511–18. Pubmed, doi:10.1167/iovs.15-18929.
Belghith A, Medeiros FA, Bowd C, Liebmann JM, Girkin CA, Weinreb RN, Zangwill LM. Structural Change Can Be Detected in Advanced-Glaucoma Eyes. Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT511–OCT518.

Published In

Invest Ophthalmol Vis Sci

DOI

EISSN

1552-5783

Publication Date

July 1, 2016

Volume

57

Issue

9

Start / End Page

OCT511 / OCT518

Location

United States

Related Subject Headings

  • Visual Fields
  • Visual Field Tests
  • Tomography, Optical Coherence
  • Severity of Illness Index
  • Retinal Ganglion Cells
  • Reproducibility of Results
  • ROC Curve
  • Optic Disk
  • Ophthalmology & Optometry
  • Nerve Fibers