Quantitative Trait Locus Analysis of SIX1-SIX6 With Retinal Nerve Fiber Layer Thickness in Individuals of European Descent.

Journal Article (Journal Article;Multicenter Study)

PURPOSE: To perform a quantitative trait locus (QTL) analysis and evaluate whether a locus between SIX1 and SIX6 is associated with retinal nerve fiber layer (RNFL) thickness in individuals of European descent. DESIGN: Observational, multicenter, cross-sectional study. METHODS: A total of 231 participants were recruited from the Diagnostic Innovations in Glaucoma Study and the African Descent and Glaucoma Evaluation Study. Association of rs10483727 in SIX1-SIX6 with global and sectoral RNFL thickness was performed. Quantitative trait analysis with the additive model of inheritance was analyzed using linear regression. Trend analysis was performed to evaluate the mean global and sectoral RNFL thickness with 3 genotypes of interest (T/T, C/T, C/C). All models were adjusted for age and sex. RESULTS: Direction of association between T allele and RNFL thickness was consistent in the global and different sectoral RNFL regions. Each copy of the T risk allele in rs10483727 was associated with -0.16 μm thinner global RNFL thickness (β = -0.16, 95% confidence interval: -0.28 to -0.03; P = .01). Similar patterns were found for the sectoral regions, including inferior (P = .03), inferior-nasal (P = .017), superior-nasal (P = .0025), superior (P = .002) and superior-temporal (P = .008). The greatest differences were observed in the superior and inferior quadrants, supporting clinical observations for RNFL thinning in glaucoma. Thinner global RNFL was found in subjects with T/T genotypes compared to subjects with C/T and C/C genotypes (P = .044). CONCLUSIONS: Each copy of the T risk allele has an additive effect and was associated with thinner global and sectoral RNFL. Findings from this QTL analysis further support a genetic contribution to glaucoma pathophysiology.

Full Text

Cited Authors

  • Kuo, JZ; Zangwill, LM; Medeiros, FA; Liebmann, JM; Girkin, CA; Hammel, N; Rotter, JI; Weinreb, RN

Published Date

  • July 2015

Published In

Volume / Issue

  • 160 / 1

Start / End Page

  • 123 - 30.e1

PubMed ID

  • 25849520

Pubmed Central ID

  • PMC4509729

Electronic International Standard Serial Number (EISSN)

  • 1879-1891

Digital Object Identifier (DOI)

  • 10.1016/j.ajo.2015.04.001


  • eng

Conference Location

  • United States