Chemo-mechanical modeling of artificially and naturally bonded soils

Accepted

Journal Article

© 2018 Elsevier Ltd Chemo-mechanical effects are known to be significant in a number of applications in modern geomechanics, ranging from slope stability assessment to soil improvement and CO2 sequestration. This work focuses on coupled chemo-mechanical modeling of bonded geomaterials undergoing either mechanical strengthening, due to increased cementation, or weakening, due to cement dissolution. A constitutive model is developed that accounts for the multi-scale nature of the chemo-mechanical problem, introducing some cross-scale functions establishing a relationship between the evolution of microscopic variables and the macroscopic material behavior, realistically following the evolution of the reactive surface area, cross-sectional area and the number of bonds along with dissolution/deposition. The model presented here builds up on a previously introduced framework. However, at variance with existing works, it is specialized on materials with only reactive bonds, such as carbonate cemented sandstone or microbially cemented silica sand. Model validation is provided upon reproducing different types of chemo-mechanical experimental datasets, on different naturally and artificially cemented materials, to establish the reliability of the proposed framework.

Full Text

Duke Authors

Cited Authors

  • Gajo, A; Cecinato, F; Hueckel, T

Published Date

  • June 1, 2019

Published In

Volume / Issue

  • 18 /

Start / End Page

  • 13 - 29

Electronic International Standard Serial Number (EISSN)

  • 2352-3808

Digital Object Identifier (DOI)

  • 10.1016/j.gete.2018.11.005

Citation Source

  • Scopus