Micro-Electrode-Dot-Array Digital Microfluidic Biochips: Technology, Design Automation, and Test Techniques.


Journal Article

Digital microfluidic biochips (DMFBs) are being increasingly used for DNA sequencing, point-of-care clinical diagnostics, and immunoassays. DMFBs based on a micro-electrode-dot-array (MEDA) architecture have recently been proposed, and fundamental droplet manipulations, e.g., droplet mixing and splitting, have also been experimentally demonstrated on MEDA biochips. There can be thousands of microelectrodes on a single MEDA biochip, and the fine-grained control of nanoliter volumes of biochemical samples and reagents is also enabled by this technology. MEDA biochips offer the benefits of real-time sensitivity, lower cost, easy system integration with CMOS modules, and full automation. This review paper first describes recent design tools for high-level synthesis and optimization of map bioassay protocols on a MEDA biochip. It then presents recent advances in scheduling of fluidic operations, placement of fluidic modules, droplet-size-aware routing, adaptive error recovery, sample preparation, and various testing techniques. With the help of these tools, biochip users can concentrate on the development of nanoscale bioassays, leaving details of chip optimization and implementation to software tools.

Full Text

Duke Authors

Cited Authors

  • Zhong, Z; Li, Z; Chakrabarty, K; Ho, T-Y; Lee, C-Y

Published Date

  • April 2019

Published In

Volume / Issue

  • 13 / 2

Start / End Page

  • 292 - 313

PubMed ID

  • 30571645

Pubmed Central ID

  • 30571645

Electronic International Standard Serial Number (EISSN)

  • 1940-9990

International Standard Serial Number (ISSN)

  • 1932-4545

Digital Object Identifier (DOI)

  • 10.1109/tbcas.2018.2886952


  • eng