Skip to main content
Journal cover image

Micro-topographic roughness analysis (MTRA) highlights minimally eroded terrain in a landscape severely impacted by historic agriculture

Publication ,  Journal Article
Brecheisen, ZS; Cook, CW; Heine, PR; Richter, DDB
Published in: Remote Sensing of Environment
March 1, 2019

The 190 km2 Calhoun Critical Zone Observatory in the Piedmont region of South Carolina, USA lies in an ancient, highly weathered landscape transformed by historic agricultural erosion. Following the conversion of largely hardwood forests to cultivated fields and pastures for ~200 years, excess runoff from fields led to extreme sheet, rill, and gully erosion across the landscape. Roads, terraces, and a variety of other human disturbances have increased the landscape's surface roughness. By the 1950s, cultivation-based agriculture was largely abandoned across most of the Southern Piedmont due to soil erosion, declining agricultural productivity, and shifting agricultural markets. Secondary forests, dominated by loblolly and shortleaf pines, have since regrown on much of the landscape, including the 1500 km2 Sumter National Forest, which was purchased from farmers and private land owners in the 1930s. Although this landscape was intensively farmed for approximately 150 years, there are a few hardwood forest stands and even entire small watersheds that have never been plowed and degraded by farming. Such relatively old hardwood stands and watersheds comprise relic landforms whose soils, regoliths, and vegetation are of interest to hydrologists, environmental historians, biogeochemists, geomorphologists, geologists, pedologists, and others interested in understanding the legacy of land-use history in this severely altered environment. In this work we champion the need for high-resolution terrain mapping and demonstrate how Light Detection And Ranging (LiDAR) digital elevation model (DEM) data and microtopographic terrain roughness analyses (MTRA) can be used to infer land use history and management. This is accomplished by analyzing fine scale variation in terrain slope across the 1190 km2 CCZO using data derived from three independent and overlapping LiDAR datasets at varying spatial resolutions. Terrain slope variability MTRA is further compared to three other methods of capturing and quantifying fine-scale surface roughness. We lastly demonstrate how these analyses can be employed in concert with historic aerial photography from the 1930's, contemporary Landsat remote sensing data, and ecological field data to identify reference relic landforms: hardwood stands, hillslopes, and small watersheds that have experienced minimal anthropogenic erosion for study and conservation.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Remote Sensing of Environment

DOI

ISSN

0034-4257

Publication Date

March 1, 2019

Volume

222

Start / End Page

78 / 89

Related Subject Headings

  • Geological & Geomatics Engineering
  • 37 Earth sciences
  • 0909 Geomatic Engineering
  • 0406 Physical Geography and Environmental Geoscience
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Brecheisen, Z. S., Cook, C. W., Heine, P. R., & Richter, D. D. B. (2019). Micro-topographic roughness analysis (MTRA) highlights minimally eroded terrain in a landscape severely impacted by historic agriculture. Remote Sensing of Environment, 222, 78–89. https://doi.org/10.1016/j.rse.2018.12.025
Brecheisen, Z. S., C. W. Cook, P. R. Heine, and D. D. B. Richter. “Micro-topographic roughness analysis (MTRA) highlights minimally eroded terrain in a landscape severely impacted by historic agriculture.” Remote Sensing of Environment 222 (March 1, 2019): 78–89. https://doi.org/10.1016/j.rse.2018.12.025.
Brecheisen ZS, Cook CW, Heine PR, Richter DDB. Micro-topographic roughness analysis (MTRA) highlights minimally eroded terrain in a landscape severely impacted by historic agriculture. Remote Sensing of Environment. 2019 Mar 1;222:78–89.
Brecheisen, Z. S., et al. “Micro-topographic roughness analysis (MTRA) highlights minimally eroded terrain in a landscape severely impacted by historic agriculture.” Remote Sensing of Environment, vol. 222, Mar. 2019, pp. 78–89. Scopus, doi:10.1016/j.rse.2018.12.025.
Brecheisen ZS, Cook CW, Heine PR, Richter DDB. Micro-topographic roughness analysis (MTRA) highlights minimally eroded terrain in a landscape severely impacted by historic agriculture. Remote Sensing of Environment. 2019 Mar 1;222:78–89.
Journal cover image

Published In

Remote Sensing of Environment

DOI

ISSN

0034-4257

Publication Date

March 1, 2019

Volume

222

Start / End Page

78 / 89

Related Subject Headings

  • Geological & Geomatics Engineering
  • 37 Earth sciences
  • 0909 Geomatic Engineering
  • 0406 Physical Geography and Environmental Geoscience