Counter cross-flow evaporator geometries for supercritical organic Rankine cycles

Published

Journal Article

© 2019 Elsevier Ltd With recent advancements in advanced manufacturing techniques, it is now possible to fabricate complex geometries that take advantage of well known principles of heat transfer. Therefore, unconventional configurations to enhance effectiveness beyond conventional designs can now be considered for practical application. Thermal performance and overall cost of a new design of heat exchangers in counter cross-flow configurations are studied using a simplified but accurate computational method. The new heat exchanger design was introduced and studied previously for a cross-flow configuration by Sabau et al. (2016, 2018). This new design concept uses multi-scale configurations with successive plenums for the working fluid. At the smallest scale the tubes are sized to be equal to the hydraulic entrance length of the inside fluid, in accord with constructal design. Results indicate that compared to the earlier cross-flow configuration, the counter cross-flow arrangement improves the thermal performance of the heat exchanger by as much as 17% and lowers the total cost by as much as 14%.

Full Text

Duke Authors

Cited Authors

  • Nejad, AH; Ekici, K; Sabau, AS; Bejan, A; Arimilli, RV

Published Date

  • June 1, 2019

Published In

Volume / Issue

  • 135 /

Start / End Page

  • 425 - 435

International Standard Serial Number (ISSN)

  • 0017-9310

Digital Object Identifier (DOI)

  • 10.1016/j.ijheatmasstransfer.2019.01.134

Citation Source

  • Scopus