MicroRNA-375 Suppresses the Growth and Invasion of Fibrolamellar Carcinoma.

Journal Article (Journal Article)

BACKGROUND & AIMS: Fibrolamellar carcinoma (FLC) is a rare liver cancer that primarily affects adolescents and young adults. It is characterized by a heterozygous approximately 400-kb deletion on chromosome 19 that results in a unique fusion between DnaJ heat shock protein family member B1 (DNAJB1) and the alpha catalytic subunit of protein kinase A (PRKACA). The role of microRNAs (miRNAs) in FLC remains unclear. We identified dysregulated miRNAs in FLC and investigated whether dysregulation of 1 key miRNA contributes to FLC pathogenesis. METHODS: We analyzed small RNA sequencing (smRNA-seq) data from The Cancer Genome Atlas to identify dysregulated miRNAs in primary FLC tumors and validated the findings in 3 independent FLC cohorts. smRNA-seq also was performed on a FLC patient-derived xenograft model as well as purified cell populations of the liver to determine whether key miRNA changes were tumor cell-intrinsic. We then used clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (Cas9) technology and transposon-mediated gene transfer in mice to determine if the presence of DNAJB1-PRKACA is sufficient to suppress miR-375 expression. Finally, we established a new FLC cell line and performed colony formation and scratch wound assays to determine the functional consequences of miR-375 overexpression. RESULTS: We identified miR-375 as the most dysregulated miRNA in primary FLC tumors (27-fold down-regulation; P = .009). miR-375 expression also was decreased significantly in a FLC patient-derived xenograft model compared to 4 different cell populations of the liver. Introduction of DNAJB1-PRKACA by clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 engineering and transposon-mediated somatic gene transfer in mice was sufficient to induce significant loss of miR-375 expression (P < .05). Overexpression of miR-375 in FLC cells inhibited Hippo signaling pathway proteins, including yes-associated protein 1 and connective tissue growth factor, and suppressed cell proliferation and migration (P < .05). CONCLUSIONS: We identified miR-375 as the most down-regulated miRNA in FLC tumors and showed that overexpression of miR-375 mitigated tumor cell growth and invasive potential. These findings open a potentially new molecular therapeutic approach. Further studies are necessary to determine how DNAJB1-PRKACA suppresses miR-375 expression and whether miR-375 has additional important targets in this tumor. Transcript profiling: GEO accession numbers: GSE114974 and GSE125602.

Full Text

Duke Authors

Cited Authors

  • Dinh, TA; Jewell, ML; Kanke, M; Francisco, A; Sritharan, R; Turnham, RE; Lee, S; Kastenhuber, ER; Wauthier, E; Guy, CD; Yeung, RS; Lowe, SW; Reid, LM; Scott, JD; Diehl, AM; Sethupathy, P

Published Date

  • 2019

Published In

Volume / Issue

  • 7 / 4

Start / End Page

  • 803 - 817

PubMed ID

  • 30763770

Pubmed Central ID

  • PMC6468197

Electronic International Standard Serial Number (EISSN)

  • 2352-345X

Digital Object Identifier (DOI)

  • 10.1016/j.jcmgh.2019.01.008


  • eng

Conference Location

  • United States