Three-dimensional magnetic terahertz metamaterials using a multilayer electroplating technique

Published

Journal Article

In the last decade, the development of metamaterials has led to exotic phenomena not shown in nature, including negative refractive index, invisibility cloaking and perfect absorption. To achieve these effects requires creating magnetically resonant subwavelength structures, since naturally occurring magnetism typically occurs at relatively low frequencies. In the far-infrared, or terahertz (THz), region of the electromagnetic spectrum, it is difficult to obtain a strong magnetic response from planar metamaterials at normal incidence. In this paper, multilayer electroplating is used to fabricate three-dimensional (3D) split-ring resonators that stand up out of plane. This enables the maximum coupling to the magnetic response at normal incidence. Characterization using THz time-domain spectroscopy indicates a strong magnetic resonance, and parameter extraction reveals a negative permeability from 1 to 1.3 THz with the minimal value of 2. The successful design, fabrication and characterization of 3D metamaterials provide opportunities to achieve different electromagnetic properties and novel devices in the THz range. © 2012 IOP Publishing Ltd.

Full Text

Cited Authors

  • Fan, K; Strikwerda, AC; Averitt, RD; Zhang, X

Published Date

  • April 1, 2012

Published In

Volume / Issue

  • 22 / 4

Electronic International Standard Serial Number (EISSN)

  • 1361-6439

International Standard Serial Number (ISSN)

  • 0960-1317

Digital Object Identifier (DOI)

  • 10.1088/0960-1317/22/4/045011

Citation Source

  • Scopus