Generation of renewable mouse intestinal epithelial cell monolayers and organoids for functional analyses.


Journal Article

BACKGROUND:Conditional reprogramming has enabled the development of long-lived, normal epithelial cell lines from mice and humans by in vitro culture with ROCK inhibitor on a feeder layer. We applied this technology to mouse small intestine to create 2D mouse intestinal epithelial monolayers (IEC monolayers) from genetic mouse models for functional analysis. RESULTS:IEC monolayers form epithelial colonies that proliferate on a feeder cell layer and are able to maintain their genotype over long-term passage. IEC monolayers form 3D spheroids in matrigel culture and monolayers on transwell inserts making them useful for functional analyses. IEC monolayers derived from the Cystic Fibrosis (CF) mouse model CFTR ∆F508 fail to respond to CFTR activator forskolin in 3D matrigel culture as measured by spheroid swelling and transwell monolayer culture via Ussing chamber electrophysiology. Tumor IEC monolayers generated from the ApcMin/+ mouse intestinal cancer model grow more quickly than wild-type (WT) IEC monolayers both on feeders and as spheroids in matrigel culture. CONCLUSIONS:These results indicate that generation of IEC monolayers is a useful model system for growing large numbers of genotype-specific mouse intestinal epithelial cells that may be used in functional studies to examine molecular mechanisms of disease and to identify and assess novel therapeutic compounds.

Full Text

Duke Authors

Cited Authors

  • Moorefield, EC; Blue, RE; Quinney, NL; Gentzsch, M; Ding, S

Published Date

  • August 15, 2018

Published In

Volume / Issue

  • 19 / 1

Start / End Page

  • 15 -

PubMed ID

  • 30111276

Pubmed Central ID

  • 30111276

Electronic International Standard Serial Number (EISSN)

  • 1471-2121

International Standard Serial Number (ISSN)

  • 1471-2121

Digital Object Identifier (DOI)

  • 10.1186/s12860-018-0165-0


  • eng