Electrotaxis of Glioblastoma and Medulloblastoma Spheroidal Aggregates.

Journal Article (Journal Article)

Treatment of neuroepithelial cancers remains a daunting clinical challenge, particularly due to an inability to address rampant invasion deep into eloquent regions of the brain. Given the lack of access, and the dispersed nature of brain tumor cells, we explore the possibility of electric fields inducing directed tumor cell migration. In this study we investigate the properties of populations of brain cancer undergoing electrotaxis, a phenomenon whereby cells are directed to migrate under control of an electrical field. We investigate two cell lines for glioblastoma and medulloblastoma (U87mg & DAOY, respectively), plated as spheroidal aggregates in Matrigel-filled electrotaxis channels, and report opposing electrotactic responses. To further understand electrotactic migration of tumor cells, we performed RNA-sequencing for pathway discovery to identify signaling that is differentially affected by the exposure of direct-current electrical fields. Further, using selective pharmacological inhibition assays, focused on the PI3K/mTOR/AKT signaling axis, we validate whether there is a causal relationship to electrotaxis and these mechanisms of action. We find that U87 mg electrotaxis is abolished under pharmacological inhibition of PI3Kγ, mTOR, AKT and ErbB2 signaling, whereas DAOY cell electrotaxis was not attenuated by these or other pathways evaluated.

Full Text

Duke Authors

Cited Authors

  • Lyon, JG; Carroll, SL; Mokarram, N; Bellamkonda, RV

Published Date

  • March 29, 2019

Published In

Volume / Issue

  • 9 / 1

Start / End Page

  • 5309 -

PubMed ID

  • 30926929

Pubmed Central ID

  • PMC6441013

Electronic International Standard Serial Number (EISSN)

  • 2045-2322

International Standard Serial Number (ISSN)

  • 2045-2322

Digital Object Identifier (DOI)

  • 10.1038/s41598-019-41505-6

Language

  • eng