TrkB-Shc signaling protects against hippocampal injury following status epilepticus.

Published online

Journal Article

Temporal lobe epilepsy (TLE) is a common and commonly devastating form of human epilepsy for which only symptomatic therapy is available. One cause of TLE is an episode of de novo prolonged seizures (status epilepticus, SE). Understanding the molecular signaling mechanisms by which SE transforms a brain from normal to epileptic may reveal novel targets for preventive and disease-modifying therapies. SE-induced activation of the BDNF receptor tyrosine kinase, TrkB, is one signaling pathway by which SE induces TLE. While activation of TrkB signaling promotes development of epilepsy in this context, it also reduces SE-induced neuronal death. This led us to hypothesize that distinct signaling pathways downstream of TrkB mediate the desirable (neuroprotective) and undesirable (epileptogenesis) consequences. We subsequently demonstrated that TrkB-mediated activation of PLCγ1 is required for epileptogenesis. Here we tested the hypothesis that the TrkB-Shc-Akt signaling pathway mediates the neuroprotective consequences of TrkB activation following SE. We studied measures of molecular signaling and cell death in a model of SE in mice of both sexes, including wild-type and TrkBShc/Shc mutant mice in which a point mutation (Y515F) of TrkB prevents the binding of Shc to activated TrkB kinase. Genetic disruption of TrkB-Shc signaling had no effect on severity of SE yet partially inhibited activation of the pro-survival adaptor protein Akt. Importantly, genetic disruption of TrkB-Shc signaling exacerbated hippocampal neuronal death induced by SE. We conclude that that therapies targeting TrkB signaling for preventing epilepsy should spare TrkB-Shc-Akt signaling and thereby preserve the neuroprotective benefits.SIGNIFICANCE STATEMENTTemporal lobe epilepsy (TLE) is a common and devastating form of human epilepsy that lacks preventive therapies. Understanding the molecular signaling mechanisms underlying the development of TLE may identify novel therapeutic targets. BDNF signaling thru TrkB receptor tyrosine kinase is one molecular mechanism promoting TLE. We previously discovered that TrkB-mediated activation of PLCγ1 promotes epileptogenesis. Here we reveal that TrkB-mediated activation of Akt protects against hippocampal neuronal death in vivo following status epilepticus. These findings strengthen the evidence that desirable and undesirable consequences of status epilepticus-induced TrkB activation are mediated by distinct signaling pathways downstream of this receptor. These results provide a strong rationale for a novel therapeutic strategy selectively targeting individual signaling pathways downstream of TrkB for preventing epilepsy.

Full Text

Duke Authors

Cited Authors

  • Zhong Huang, Y; He, X-P; Krishnamurthy, K; McNamara, JO

Published Date

  • March 29, 2019

Published In

PubMed ID

  • 30926745

Pubmed Central ID

  • 30926745

Electronic International Standard Serial Number (EISSN)

  • 1529-2401

Digital Object Identifier (DOI)

  • 10.1523/JNEUROSCI.2939-18.2019


  • eng

Conference Location

  • United States