A controlled red phosphorus@Ni-P core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries

Journal Article (Journal Article)

Sodium-ion batteries (SIBs), a potential alternative to lithium ion batteries (LIBs), have attracted remarkable attention recently due to the natural abundance and low-cost of sodium. Here, we have presented a comprehensive study on combining electroless deposition with chemical dealloying to control the shell thickness and composition of a red phosphorus (RP)@Ni-P core@shell nanostructure as a high performance anode for SIBs. For the first time depending on regulating the dealloying time (1 h, 4 h, 8 h, 10 h and 20 h) of RP@Ni-P synthesized by electroless deposition of Ni on RP, 1 h RP@Ni-P, 4 h RP@Ni-P, 8 h RP@Ni-P, 10 h RP@Ni-P and 20 h RP@Ni-P with different shell thicknesses and compositions were prepared. The in situ generated Ni P on RP particle surfaces can facilitate intimate contact between RP and a mechanically strong amorphous Ni-P outer shell with a high electronic conductivity, which ensures strong electrode structural integrity, a stable solid electrolyte interphase and ultra-fast electronic transport. As a result, the 8 h RP@Ni-P composite presents a super high capacity (1256.2 mA h g after 200 cycles at 260 mA g ), superior rate capability (491 mA h g at 5200 mA g ) and unprecedented ultralong cycle-life at 5000 mA g for an RP-based SIB anode (409.1 mA h g after 2000 cycles). This simple scalable synthesis approach will provide a new strategy for the optimization of core@shell nanostructures, paving the way for mass production of high performance electrodes for SIBs and other energy storage systems. 2 composite composite composite composite composite composite -1 -1 -1 -1 -1 -1

Full Text

Duke Authors

Cited Authors

  • Liu, S; Feng, J; Bian, X; Liu, J; Xu, H; An, Y

Published Date

  • January 1, 2017

Published In

Volume / Issue

  • 10 / 5

Start / End Page

  • 1222 - 1233

Electronic International Standard Serial Number (EISSN)

  • 1754-5706

International Standard Serial Number (ISSN)

  • 1754-5692

Digital Object Identifier (DOI)

  • 10.1039/c7ee00102a

Citation Source

  • Scopus