Scaling properties of noise-induced switching in a bistable tunnel diode circuit

Published

Journal Article

© 2019, EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature. Abstract: Noise-induced switching between coexisting metastable states occurs in a wide range of far-from-equilibrium systems including micro-mechanical oscillators, epidemiological and climate change models, and nonlinear electronic transport in tunneling structures such as semiconductor superlattices and tunnel diodes. In the case of tunnel diode circuits, noise-induced switching behavior is associated with negative differential resistance in the static current–voltage characteristics and bistability, i.e., the existence of two macroscopic current states for a given applied voltage. Noise effects are particularly strong near the onset and offset of bistable current behavior, corresponding to bifurcation points in the associated dynamical system. In this paper, we show that the tunnel diode system provides an excellent experimental platform for the precision measurement of scaling properties of mean switching times versus applied voltage near bifurcation points. More specifically, experimental data confirm that the mean switching time scales logarithmically as the 3/2 power of voltage difference over an exceptionally wide range of time scales and noise intensities. Graphical abstract: [Figure not available: see fulltext.].

Full Text

Duke Authors

Cited Authors

  • Teitsworth, SW; Olson, ME; Bomze, Y

Published Date

  • April 1, 2019

Published In

Volume / Issue

  • 92 / 4

Electronic International Standard Serial Number (EISSN)

  • 1434-6036

International Standard Serial Number (ISSN)

  • 1434-6028

Digital Object Identifier (DOI)

  • 10.1140/epjb/e2019-90711-0

Citation Source

  • Scopus