Data and scripts from: Growing timescales and lengthscales characterizing vibrations of amorphous solids


The data files in this collection are associated with the paper "Growing timescales and lengthscales characterizing vibrations of amorphous solids", Y. Jin, L. Berthier, P. Charbonneau, G. Parisi, B. Seoane, and F. Zamponi, PNAS, 2016. They include .dat, .eps, and .gle files with associated raw data and generating scripts to allow for replication of the figures. Low-temperature properties of crystalline solids can be understood using harmonic perturbations around a perfect lattice, as in Debye's theory. Low-temperature properties of amorphous solids, however, strongly depart from such descriptions, displaying enhanced transport, activated slow dynamics across energy barriers, excess vibrational modes with respect to Debye's theory (i.e., a Boson Peak), and complex irreversible responses to small mechanical deformations. These experimental observations indirectly suggest that the dynamics of amorphous solids becomes anomalous at low temperatures. Here, we present direct numerical evidence that vibrations change nature at a well-defined location deep inside the glass phase of a simple glass former. We provide a real-space description of this transition and of the rapidly growing time and length scales that accompany it. Our results provide the seed for a universal understanding of low-temperature glass anomalies within the theoretical framework of the recently discovered Gardner phase transition.

Data Access

Duke Authors

Cited Authors

  • Berthier, L; Charbonneau, P; Jin, Y; Parisi, G; Seoane, B; Zamponi, F

Published Date

  • July 5, 2016

Digital Object Identifier (DOI)

  • 10.7924/G8QN64NT