Increasing activity of H(2)-metabolizing microbes lowers decompression sickness risk in pigs during H(2) dives.

Journal Article (Journal Article)

The risk of decompression sickness (DCS) was modulated by varying the biochemical activity used to eliminate some of the hydrogen (H(2)) stored in the tissues of pigs (19.4 +/- 0.2 kg) during hyperbaric exposures to H(2). Treated pigs (n = 16) received intestinal injections of Methanobrevibacter smithii, a microbe that metabolizes H(2) to water and CH(4). Surgical controls (n = 10) received intestinal injections of saline, and an additional control group (n = 10) was untreated. Pigs were placed in a chamber and compressed to 24 atm abs (20.6-22.9 atm H(2)). After 3 h, the pigs were decompressed and observed for symptoms of DCS for 1 h. Pigs with M. smithii had a significantly lower (P < 0.05) incidence of DCS (44%; 7/16) than all controls (80%; 16/20). The DCS risk decreased with increasing activity of microbes injected (logistic regression, P < 0.05). Thus the supplemental tissue washout of the diluent gas by microbial metabolism was inversely correlated with DCS risk in a dose-dependent manner in this pig model.

Full Text

Duke Authors

Cited Authors

  • Kayar, SR; Fahlman, A; Lin, WC; Whitman, WB

Published Date

  • December 2001

Published In

Volume / Issue

  • 91 / 6

Start / End Page

  • 2713 - 2719

PubMed ID

  • 11717238

Electronic International Standard Serial Number (EISSN)

  • 1522-1601

International Standard Serial Number (ISSN)

  • 8750-7587

Digital Object Identifier (DOI)

  • 10.1152/jappl.2001.91.6.2713


  • eng