Unexpected Stretching of Entangled Ring Macromolecules.
Journal Article (Journal Article)
In the melt state at equilibrium, entangled nonconcatenated ring macromolecules adapt more compact conformations compared to their linear analogs and do not form an entanglement network. We show here that, when subjected to uniaxial stretching, they exhibit a unique response, which sets them apart from any other polymer. Remarkably, whereas both linear and ring polymers strain-harden, the viscosity of the rings increases dramatically (the melt thickens) at very low stretch rates due to the unraveling of their conformations along the stretching direction. At high rates, stretching leads to viscosity thinning similar to that of entangled linear polymers, albeit with subtle differences.
Full Text
Duke Authors
Cited Authors
- Huang, Q; Ahn, J; Parisi, D; Chang, T; Hassager, O; Panyukov, S; Rubinstein, M; Vlassopoulos, D
Published Date
- May 2019
Published In
Volume / Issue
- 122 / 20
Start / End Page
- 208001 -
PubMed ID
- 31172770
Pubmed Central ID
- PMC6778440
Electronic International Standard Serial Number (EISSN)
- 1079-7114
International Standard Serial Number (ISSN)
- 0031-9007
Digital Object Identifier (DOI)
- 10.1103/physrevlett.122.208001
Language
- eng