Machine Learning Algorithm Predicts Cardiac Resynchronization Therapy Outcomes: Lessons From the COMPANION Trial.

Journal Article (Journal Article;Multicenter Study)

BACKGROUND: Cardiac resynchronization therapy (CRT) reduces morbidity and mortality in heart failure patients with reduced left ventricular function and intraventricular conduction delay. However, individual outcomes vary significantly. This study sought to use a machine learning algorithm to develop a model to predict outcomes after CRT. METHODS AND RESULTS: Models were developed with machine learning algorithms to predict all-cause mortality or heart failure hospitalization at 12 months post-CRT in the COMPANION trial (Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure). The best performing model was developed with the random forest algorithm. The ability of this model to predict all-cause mortality or heart failure hospitalization and all-cause mortality alone was compared with discrimination obtained using a combination of bundle branch block morphology and QRS duration. In the 595 patients with CRT-defibrillator in the COMPANION trial, 105 deaths occurred (median follow-up, 15.7 months). The survival difference across subgroups differentiated by bundle branch block morphology and QRS duration did not reach significance (P=0.08). The random forest model produced quartiles of patients with an 8-fold difference in survival between those with the highest and lowest predicted probability for events (hazard ratio, 7.96; P<0.0001). The model also discriminated the risk of the composite end point of all-cause mortality or heart failure hospitalization better than subgroups based on bundle branch block morphology and QRS duration. CONCLUSIONS: In the COMPANION trial, a machine learning algorithm produced a model that predicted clinical outcomes after CRT. Applied before device implant, this model may better differentiate outcomes over current clinical discriminators and improve shared decision-making with patients.

Full Text

Duke Authors

Cited Authors

  • Kalscheur, MM; Kipp, RT; Tattersall, MC; Mei, C; Buhr, KA; DeMets, DL; Field, ME; Eckhardt, LL; Page, CD

Published Date

  • January 2018

Published In

Volume / Issue

  • 11 / 1

Start / End Page

  • e005499 -

PubMed ID

  • 29326129

Pubmed Central ID

  • PMC5769699

Electronic International Standard Serial Number (EISSN)

  • 1941-3084

Digital Object Identifier (DOI)

  • 10.1161/CIRCEP.117.005499


  • eng

Conference Location

  • United States