Skip to main content

Multiscale fluctuation-based dispersion entropy and its applications to neurological diseases

Publication ,  Journal Article
Azami, H; Arnold, SE; Sanei, S; Chang, Z; Sapiro, G; Escudero, J; Gupta, AS
Published in: IEEE Access
January 1, 2019

Fluctuation-based dispersion entropy (FDispEn) is a new approach to estimate the dynamical variability of the fluctuations of signals. It is based on Shannon entropy and fluctuation-based dispersion patterns. To quantify the physiological dynamics over multiple time scales, multiscale FDispEn (MFDE) is developed in this paper. MFDE is robust to the presence of baseline wanders or trends in the data. We evaluate MFDE, compared with popular multiscale sample entropy (MSE), multiscale fuzzy entropy (MFE), and the recently introduced multiscale dispersion entropy (MDE), on selected synthetic data and five neurological diseases' datasets: 1) focal and non-focal electroencephalograms (EEGs); 2) walking stride interval signals for young, elderly, and Parkinson's subjects; 3) stride interval fluctuations for Huntington's disease and amyotrophic lateral sclerosis; 4) EEGs for controls and Alzheimer's disease patients; and 5) eye movement data for Parkinson's disease and ataxia. The MFDE avoids the problem of the undefined MSE values and, compared with the MFE and MSE, leads to more stable entropy values over the scale factors for white and pink noises. Overall, the MFDE is the fastest and most consistent method for the discrimination of different states of neurological data, especially where the mean value of a time series considerably changes along with the signal (e.g., eye movement data). This paper shows that MFDE is a relevant new metric to gain further insights into the dynamics of neurological diseases' recordings. The MATLAB codes for the MFDE and its refined composite form are available in Xplore.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

IEEE Access

DOI

EISSN

2169-3536

Publication Date

January 1, 2019

Volume

7

Start / End Page

68718 / 68733

Related Subject Headings

  • 46 Information and computing sciences
  • 40 Engineering
  • 10 Technology
  • 09 Engineering
  • 08 Information and Computing Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Azami, H., Arnold, S. E., Sanei, S., Chang, Z., Sapiro, G., Escudero, J., & Gupta, A. S. (2019). Multiscale fluctuation-based dispersion entropy and its applications to neurological diseases. IEEE Access, 7, 68718–68733. https://doi.org/10.1109/ACCESS.2019.2918560
Azami, H., S. E. Arnold, S. Sanei, Z. Chang, G. Sapiro, J. Escudero, and A. S. Gupta. “Multiscale fluctuation-based dispersion entropy and its applications to neurological diseases.” IEEE Access 7 (January 1, 2019): 68718–33. https://doi.org/10.1109/ACCESS.2019.2918560.
Azami H, Arnold SE, Sanei S, Chang Z, Sapiro G, Escudero J, et al. Multiscale fluctuation-based dispersion entropy and its applications to neurological diseases. IEEE Access. 2019 Jan 1;7:68718–33.
Azami, H., et al. “Multiscale fluctuation-based dispersion entropy and its applications to neurological diseases.” IEEE Access, vol. 7, Jan. 2019, pp. 68718–33. Scopus, doi:10.1109/ACCESS.2019.2918560.
Azami H, Arnold SE, Sanei S, Chang Z, Sapiro G, Escudero J, Gupta AS. Multiscale fluctuation-based dispersion entropy and its applications to neurological diseases. IEEE Access. 2019 Jan 1;7:68718–68733.

Published In

IEEE Access

DOI

EISSN

2169-3536

Publication Date

January 1, 2019

Volume

7

Start / End Page

68718 / 68733

Related Subject Headings

  • 46 Information and computing sciences
  • 40 Engineering
  • 10 Technology
  • 09 Engineering
  • 08 Information and Computing Sciences