Engineering opposite electronic polarization of singlet and triplet states increases the yield of high-energy photoproducts.

Journal Article (Journal Article)

Efficient photosynthetic energy conversion requires quantitative, light-driven formation of high-energy, charge-separated states. However, energies of high-lying excited states are rarely extracted, in part because the congested density of states in the excited-state manifold leads to rapid deactivation. Conventional photosystem designs promote electron transfer (ET) by polarizing excited donor electron density toward the acceptor ("one-way" ET), a form of positive design. Curiously, negative design strategies that explicitly avoid unwanted side reactions have been underexplored. We report here that electronic polarization of a molecular chromophore can be used as both a positive and negative design element in a light-driven reaction. Intriguingly, prudent engineering of polarized excited states can steer a "U-turn" ET-where the excited electron density of the donor is initially pushed away from the acceptor-to outcompete a conventional one-way ET scheme. We directly compare one-way vs. U-turn ET strategies via a linked donor-acceptor (DA) assembly in which selective optical excitation produces donor excited states polarized either toward or away from the acceptor. Ultrafast spectroscopy of DA pinpoints the importance of realizing donor singlet and triplet excited states that have opposite electronic polarizations to shut down intersystem crossing. These results demonstrate that oppositely polarized electronically excited states can be employed to steer photoexcited states toward useful, high-energy products by routing these excited states away from states that are photosynthetic dead ends.

Full Text

Duke Authors

Cited Authors

  • Polizzi, NF; Jiang, T; Beratan, DN; Therien, MJ

Published Date

  • July 2019

Published In

Volume / Issue

  • 116 / 29

Start / End Page

  • 14465 - 14470

PubMed ID

  • 31182609

Pubmed Central ID

  • PMC6642396

Electronic International Standard Serial Number (EISSN)

  • 1091-6490

International Standard Serial Number (ISSN)

  • 0027-8424

Digital Object Identifier (DOI)

  • 10.1073/pnas.1901752116


  • eng