Skip to main content
Journal cover image

Amplicon sequencing of 42 nuclear loci supports directional gene flow between South Pacific populations of a hydrothermal vent limpet.

Publication ,  Journal Article
Plouviez, S; LaBella, AL; Weisrock, DW; von Meijenfeldt, FAB; Ball, B; Neigel, JE; Van Dover, CL
Published in: Ecology and evolution
June 2019

In the past few decades, population genetics and phylogeographic studies have improved our knowledge of connectivity and population demography in marine environments. Studies of deep-sea hydrothermal vent populations have identified barriers to gene flow, hybrid zones, and demographic events, such as historical population expansions and contractions. These deep-sea studies, however, used few loci, which limit the amount of information they provided for coalescent analysis and thus our ability to confidently test complex population dynamics scenarios. In this study, we investigated population structure, demographic history, and gene flow directionality among four Western Pacific hydrothermal vent populations of the vent limpet Lepetodrilus aff. schrolli. These vent sites are located in the Manus and Lau back-arc basins, currently of great interest for deep-sea mineral extraction. A total of 42 loci were sequenced from each individual using high-throughput amplicon sequencing. Amplicon sequences were analyzed using both genetic variant clustering methods and evolutionary coalescent approaches. Like most previously investigated vent species in the South Pacific, L. aff. schrolli showed no genetic structure within basins but significant differentiation between basins. We inferred significant directional gene flow from Manus Basin to Lau Basin, with low to no gene flow in the opposite direction. This study is one of the very few marine population studies using >10 loci for coalescent analysis and serves as a guide for future marine population studies.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Ecology and evolution

DOI

EISSN

2045-7758

ISSN

2045-7758

Publication Date

June 2019

Volume

9

Issue

11

Start / End Page

6568 / 6580

Related Subject Headings

  • 4102 Ecological applications
  • 3104 Evolutionary biology
  • 3103 Ecology
  • 0603 Evolutionary Biology
  • 0602 Ecology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Plouviez, S., LaBella, A. L., Weisrock, D. W., von Meijenfeldt, F. A. B., Ball, B., Neigel, J. E., & Van Dover, C. L. (2019). Amplicon sequencing of 42 nuclear loci supports directional gene flow between South Pacific populations of a hydrothermal vent limpet. Ecology and Evolution, 9(11), 6568–6580. https://doi.org/10.1002/ece3.5235
Plouviez, Sophie, Abigail Leavitt LaBella, David W. Weisrock, FA Bastiaan von Meijenfeldt, Bernard Ball, Joseph E. Neigel, and Cindy L. Van Dover. “Amplicon sequencing of 42 nuclear loci supports directional gene flow between South Pacific populations of a hydrothermal vent limpet.Ecology and Evolution 9, no. 11 (June 2019): 6568–80. https://doi.org/10.1002/ece3.5235.
Plouviez S, LaBella AL, Weisrock DW, von Meijenfeldt FAB, Ball B, Neigel JE, et al. Amplicon sequencing of 42 nuclear loci supports directional gene flow between South Pacific populations of a hydrothermal vent limpet. Ecology and evolution. 2019 Jun;9(11):6568–80.
Plouviez, Sophie, et al. “Amplicon sequencing of 42 nuclear loci supports directional gene flow between South Pacific populations of a hydrothermal vent limpet.Ecology and Evolution, vol. 9, no. 11, June 2019, pp. 6568–80. Epmc, doi:10.1002/ece3.5235.
Plouviez S, LaBella AL, Weisrock DW, von Meijenfeldt FAB, Ball B, Neigel JE, Van Dover CL. Amplicon sequencing of 42 nuclear loci supports directional gene flow between South Pacific populations of a hydrothermal vent limpet. Ecology and evolution. 2019 Jun;9(11):6568–6580.
Journal cover image

Published In

Ecology and evolution

DOI

EISSN

2045-7758

ISSN

2045-7758

Publication Date

June 2019

Volume

9

Issue

11

Start / End Page

6568 / 6580

Related Subject Headings

  • 4102 Ecological applications
  • 3104 Evolutionary biology
  • 3103 Ecology
  • 0603 Evolutionary Biology
  • 0602 Ecology