Quantitative Delta T1 (dT1) as a Replacement for Adjudicated Central Reader Analysis of Contrast-Enhancing Tumor Burden: A Subanalysis of the American College of Radiology Imaging Network 6677/Radiation Therapy Oncology Group 0625 Multicenter Brain Tumor Trial.

Published

Journal Article

BACKGROUND AND PURPOSE: Brain tumor clinical trials requiring solid tumor assessment typically rely on the 2D manual delineation of enhancing tumors by ≥2 expert readers, a time-consuming step with poor interreader agreement. As a solution, we developed quantitative dT1 maps for the delineation of enhancing lesions. This retrospective analysis compares dT1 with 2D manual delineation of enhancing tumors acquired at 2 time points during the post therapeutic surveillance period of the American College of Radiology Imaging Network 6677/Radiation Therapy Oncology Group 0625 (ACRIN 6677/RTOG 0625) clinical trial. MATERIALS AND METHODS: Patients enrolled in ACRIN 6677/RTOG 0625, a multicenter, randomized Phase II trial of bevacizumab in recurrent glioblastoma, underwent standard MR imaging before and after treatment initiation. For 123 patients from 23 institutions, both 2D manual delineation of enhancing tumors and dT1 datasets were evaluable at weeks 8 (n = 74) and 16 (n = 57). Using dT1, we assessed the radiologic response and progression at each time point. Percentage agreement with adjudicated 2D manual delineation of enhancing tumor reads and association between progression status and overall survival were determined. RESULTS: For identification of progression, dT1 and adjudicated 2D manual delineation of enhancing tumor reads were in perfect agreement at week 8, with 73.7% agreement at week 16. Both methods showed significant differences in overall survival at each time point. When nonprogressors were further divided into responders versus nonresponders/nonprogressors, the agreement decreased to 70.3% and 52.6%, yet dT1 showed a significant difference in overall survival at week 8 (P = .01), suggesting that dT1 may provide greater sensitivity for stratifying subpopulations. CONCLUSIONS: This study shows that dT1 can predict early progression comparable with the standard method but offers the potential for substantial time and cost savings for clinical trials.

Full Text

Duke Authors

Cited Authors

  • Schmainda, KM; Prah, MA; Zhang, Z; Snyder, BS; Rand, SD; Jensen, TR; Barboriak, DP; Boxerman, JL

Published Date

  • July 2019

Published In

Volume / Issue

  • 40 / 7

Start / End Page

  • 1132 - 1139

PubMed ID

  • 31248863

Pubmed Central ID

  • 31248863

Electronic International Standard Serial Number (EISSN)

  • 1936-959X

Digital Object Identifier (DOI)

  • 10.3174/ajnr.A6110

Language

  • eng

Conference Location

  • United States