Terahertz radiation of a butterfly-shaped photoconductive antenna(invited)


Journal Article

© 2019, Editorial Board of Journal of Infrared and Laser Engineering. All right reserved. The terahertz(THz) far-field radiation properties of a butterfly-shaped photoconductive antenna (PCA) were experimentally studied using a home-built THz time-domain spectroscopy(THz-TDS) setup. To distinguish the contribution of in -gap photocurrent and antenna structure to far -field radiation, polarization -dependent THz field was measured and quantified as the illuminating laser beam moved along the bias field within the gap region of electrodes. The result suggests that, although the far -field THz radiation originates from the in -gap photocurrent, the antenna structure of butterfly -shaped PCA dominates the overall THz radiation. In addition, to explore the impact of photoconductive material, radiation properties of butterfly -shaped PCAs fabricated on both low -temperature -grown GaAs (LT - GaAs) and semi-insulating GaAs (Si-GaAs) were characterized and compared. Consistent with previous experiments, it is observed that while Si-GaAs-based PCA can emit higher THz field than LT-GaAsbased PCA at low laser power, it would saturate more severely as laser power increased and eventually be surpassed by LT-GaAs-based PCA. Beyond that, it is found the severe saturation effect of Si-GaAs was due to the longer carrier lifetime and higher carrier mobility, which was confirmed by the numerical simulation.

Full Text

Duke Authors

Cited Authors

  • Zhang, J; Tuo, M; Liang, M; Ng, WR; Gehm, ME; Xin, H

Published Date

  • April 25, 2019

Published In

Volume / Issue

  • 48 / 4

International Standard Serial Number (ISSN)

  • 1007-2276

Digital Object Identifier (DOI)

  • 10.3788/IRLA201948.0402001

Citation Source

  • Scopus