Dynamics of wetting explored with inkjet printing

Published

Journal Article

© The Authors, published by EDP Sciences, 2017. An inkjet printer head, which is capable of depositing liquid droplets with a resolution of 22 picoliters and high repeatability, is employed to investigate the wetting dynamics of drops printed on a horizontal plane as well as on a granular monolayer. For a sessile drop on a horizontal plane, we characterize the contact angle hysteresis, drop volume and contact line dynamics from side view images. We show that the evaporation rate scales with the dimension of the contact line instead of the surface area of the drop. We demonstrate that the system evolves into a closed cycle upon repeating the depositing-evaporating process, owing to the high repeatability of the printing facility. Finally, we extend the investigation to a granular monolayer in order to explore the interplay between liquid deposition and granular particles.

Full Text

Duke Authors

Cited Authors

  • Völkel, S; Huang, K

Published Date

  • June 30, 2017

Published In

Volume / Issue

  • 140 /

Electronic International Standard Serial Number (EISSN)

  • 2100-014X

International Standard Serial Number (ISSN)

  • 2101-6275

Digital Object Identifier (DOI)

  • 10.1051/epjconf/201714009035

Citation Source

  • Scopus