The motion of a single molecule, the lambda-receptor, in the bacterial outer membrane.

Journal Article (Journal Article)

Using optical tweezers and single particle tracking, we have revealed the motion of a single protein, the lambda-receptor, in the outer membrane of living Escherichia coli bacteria. We genetically modified the lambda-receptor placing a biotin on an extracellular site of the receptor in vivo. The efficiency of this in vivo biotinylation is very low, thus enabling the attachment of a streptavidin-coated bead binding specifically to a single biotinylated lambda-receptor. The bead was used as a handle for the optical tweezers and as a marker for the single particle tracking routine. We propose a model that allows extraction of the motion of the protein from measurements of the mobility of the bead-molecule complex; these results are equally applicable to analyze bead-protein complexes in other membrane systems. Within a domain of radius approximately 25 nm, the receptor diffuses with a diffusion constant of (1.5 +/- 1.0) x 10(-9) cm(2)/s and sits in a harmonic potential as if it were tethered by an elastic spring of spring constant of ~1.0 x 10(-2) pN/nm to the bacterial membrane. The purpose of the protein motion might be to facilitate transport of maltodextrins through the outer bacterial membrane.

Full Text

Duke Authors

Cited Authors

  • Oddershede, L; Dreyer, JK; Grego, S; Brown, S; Berg-Sørensen, K

Published Date

  • December 2002

Published In

Volume / Issue

  • 83 / 6

Start / End Page

  • 3152 - 3161

PubMed ID

  • 12496085

Pubmed Central ID

  • PMC1302393

Electronic International Standard Serial Number (EISSN)

  • 1542-0086

International Standard Serial Number (ISSN)

  • 0006-3495

Digital Object Identifier (DOI)

  • 10.1016/s0006-3495(02)75318-6


  • eng