Whole Brain White Matter Microstructure and Upper Limb Function: Longitudinal Changes in Fractional Anisotropy and Axial Diffusivity in Post-Stroke Patients.

Journal Article (Journal Article)

Background: Diffusion tensor imaging (DTI) magnetic resonance imaging (MRI) measuring fractional anisotropy (FA) and axial diffusivity (AD) may be a useful biomarker for monitoring changes in white matter after stroke, but its associations with upper-limb motor recovery have not been well studied. We aim to describe changes in the whole-brain FA and AD in five post-stroke patients in relation to kinematic measures of elbow flexion to better understand the relationship between FA and AD changes and clinico-kinematic measures of upper limb motor recovery. Methods: We performed DTI MRI at two timepoints during the acute phase of stroke, measuring FA and AD across 48 different white matter tract regions in the brains of five hemiparetic patients with infarcts in the cortex, pons, basal ganglia, thalamus, and corona radiata. We tracked the progress of these patients using clinical Fugl-Meyer Assessments and kinematic measures of elbow flexion at the acute phase within 14 (mean: 9.4 ± 2.49) days of stroke symptom onset and at a follow-up appointment 2 weeks later (mean: 16 ± 1.54) days. Results: Changes in FA and AD in 48 brain regions occurring during stroke rehabilitation are described in relation to motor recovery. In this case series, one patient with a hemipontine infarct showed an increase in FA of the ipsilateral and contralateral corticospinal tract, whereas other patients with lesions involving the corona radiata and middle cerebral artery showed widespread decreases in perilesional FA. On the whole, FA and AD seemed to behave inversely to each other. Conclusions: This case series describes longitudinal changes in perilesional and remote FA and AD in relation to kinematic parameters of elbow flexion at the subacute post-stroke period. Although studies with larger sample sizes are needed, our findings indicate that longitudinally measured changes in DTI-based measurements of white matter microstructural integrity may aid in the prognostication of patients affected by motor stroke.

Full Text

Duke Authors

Cited Authors

  • Oey, NE; Samuel, GS; Lim, JKW; VanDongen, AM; Ng, YS; Zhou, J

Published Date

  • 2019

Published In

Volume / Issue

  • 11 /

Start / End Page

  • 1179573519863428 -

PubMed ID

  • 31391787

Pubmed Central ID

  • PMC6668170

International Standard Serial Number (ISSN)

  • 1179-5735

Digital Object Identifier (DOI)

  • 10.1177/1179573519863428


  • eng

Conference Location

  • United States