Optogenetic dissection of mitotic spindle positioning in vivo.

Published

Journal Article

The position of the mitotic spindle determines the plane of cell cleavage, and thereby daughter cell location, size, and content. Spindle positioning is driven by dynein-mediated pulling forces exerted on astral microtubules, which requires an evolutionarily conserved complex of Gα∙GDP, GPR-1/2Pins/LGN, and LIN-5Mud/NuMA proteins. To examine individual functions of the complex components, we developed a genetic strategy for light-controlled localization of endogenous proteins in C. elegans embryos. By replacing Gα and GPR-1/2 with a light-inducible membrane anchor, we demonstrate that Gα∙GDP, Gα∙GTP, and GPR-1/2 are not required for pulling-force generation. In the absence of Gα and GPR-1/2, cortical recruitment of LIN-5, but not dynein itself, induced high pulling forces. The light-controlled localization of LIN-5 overruled normal cell-cycle and polarity regulation and provided experimental control over the spindle and cell-cleavage plane. Our results define Gα∙GDP-GPR-1/2Pins/LGN as a regulatable membrane anchor, and LIN-5Mud/NuMA as a potent activator of dynein-dependent spindle-positioning forces.

Full Text

Cited Authors

  • Fielmich, L-E; Schmidt, R; Dickinson, DJ; Goldstein, B; Akhmanova, A; van den Heuvel, S

Published Date

  • August 15, 2018

Published In

Volume / Issue

  • 7 /

PubMed ID

  • 30109984

Pubmed Central ID

  • 30109984

Electronic International Standard Serial Number (EISSN)

  • 2050-084X

International Standard Serial Number (ISSN)

  • 2050-084X

Digital Object Identifier (DOI)

  • 10.7554/eLife.38198

Language

  • eng