Prediction of Upstaged Ductal Carcinoma in situ Using Forced Labeling and Domain Adaptation.

Published online

Journal Article

OBJECTIVE: The goal of this study is to use adjunctive classes to improve a predictive model whose performance is limited by the common problems of small numbers of primary cases, high feature dimensionality, and poor class separability. Specifically, our clinical task is to use mammographic features to predict whether ductal carcinoma in situ (DCIS) identified at needle core biopsy will be later upstaged or shown to contain invasive breast cancer. METHODS: To improve the prediction of pure DCIS (negative) versus upstaged DCIS (positive) cases, this study considers the adjunctive roles of two related classes: atypical ductal hyperplasia (ADH), a non-cancer type of breast abnormity, and invasive ductal carcinoma (IDC), with 113 computer vision based mammographic features extracted from each case. To improve the baseline Model A classification of pure vs. upstaged DCIS, we designed three different strategies (Models B, C, D) with different ways of embedding features or inputs. RESULTS: Based on ROC analysis, the baseline Model A performed with AUC of 0.614 (95% CI, 0.496-0.733). All three new models performed better than the baseline, with domain adaptation (Model D) performing the best with an AUC of 0.697 (95% CI, 0.595-0.797). CONCLUSION: We improved the prediction performance of DCIS upstaging by embedding two related pathology classes in different training phases. SIGNIFICANCE: The three new strategies of embedding related class data all outperformed the baseline model, thus demonstrating not only feature similarities among these different classes, but also the potential for improving classification by using other related classes.

Full Text

Duke Authors

Cited Authors

  • Hou, R; Mazurowski, MA; Grimm, LJ; Marks, JR; King, LM; Maley, CC; Hwang, ES; Lo, JY

Published Date

  • September 9, 2019

Published In

PubMed ID

  • 31502960

Pubmed Central ID

  • 31502960

Electronic International Standard Serial Number (EISSN)

  • 1558-2531

Digital Object Identifier (DOI)

  • 10.1109/TBME.2019.2940195

Language

  • eng

Conference Location

  • United States