Nitric oxide loading reduces sickle red cell adhesion and vaso-occlusion in vivo.

Journal Article (Journal Article)

Sickle red blood cells (SSRBCs) are adherent to the endothelium, activate leukocyte adhesion, and are deficient in bioactive nitric oxide (NO) adducts such as S-nitrosothiols (SNOs), with reduced ability to induce vasodilation in response to hypoxia. All these pathophysiologic characteristics promote vascular occlusion, the hallmark of sickle cell disease (SCD). Loading hypoxic SSRBCs in vitro with NO followed by reoxygenation significantly decreased epinephrine-activated SSRBC adhesion to the endothelium, the ability of activated SSRBCs to mediate leukocyte adhesion in vitro, and vessel obstruction in vivo. Because transfusion is frequently used in SCD, we also determined the effects of banked (SNO-depleted) red blood cells (RBCs) on vaso-occlusion in vivo. Fresh or 14-day-old normal RBCs (AARBCs) reduced epinephrine-activated SSRBC adhesion to the vascular endothelium and prevented vaso-occlusion. In contrast, AARBCs stored for 30 days failed to decrease activated SSRBC adhesivity or vaso-occlusion, unless these RBCs were loaded with NO. Furthermore, NO loading of SSRBCs increased S-nitrosohemoglobin and modulated epinephrine's effect by upregulating phosphorylation of membrane proteins, including pyruvate kinase, E3 ubiquitin ligase, and the cytoskeletal protein 4.1. Thus, abnormal SSRBC NO/SNO content both contributes to the vaso-occlusive pathophysiology of SCD, potentially by affecting at least protein phosphorylation, and is potentially amenable to correction by (S)NO repletion or by RBC transfusion.

Full Text

Duke Authors

Cited Authors

  • McMahon, TJ; Shan, S; Riccio, DA; Batchvarova, M; Zhu, H; Telen, MJ; Zennadi, R

Published Date

  • September 10, 2019

Published In

  • Blood Adv

Volume / Issue

  • 3 / 17

Start / End Page

  • 2586 - 2597

PubMed ID

  • 31484636

Pubmed Central ID

  • PMC6737414

Electronic International Standard Serial Number (EISSN)

  • 2473-9537

Digital Object Identifier (DOI)

  • 10.1182/bloodadvances.2019031633


  • eng

Conference Location

  • United States