An Artificial Placenta Protects Against Lung Injury and Promotes Continued Lung Development in Extremely Premature Lambs.

Published

Journal Article

An artificial placenta (AP) utilizing extracorporeal life support (ECLS) could protect premature lungs from injury and promote continued development. Preterm lambs at estimated gestational age (EGA) 114-128 days (term = 145) were delivered by Caesarian section and managed in one of three groups: AP, mechanical ventilation (MV), or tissue control (TC). Artificial placenta lambs (114 days EGA, n = 3; 121 days, n = 5) underwent venovenous (VV)-ECLS with jugular drainage and umbilical vein reinfusion for 7 days, with a fluid-filled, occluded airway. Mechanical ventilation lambs (121 days, n = 5; 128 days, n = 5) underwent conventional MV until failure or maximum 48 hours. Tissue control lambs (114 days, n = 3; 121 days, n = 5; 128 days, n = 5) were sacrificed at delivery. At the conclusion of each experiment, lungs were procured and sectioned. Hematoxylin and eosin (H&E) slides were scored 0-4 in seven injury categories, which were summed for a total injury score. Slides were also immunostained for platelet-derived growth factor receptor (PDGFR)-α and α-actin; lung development was quantified by the area fraction of double-positive tips of secondary alveolar septa. Support duration of AP lambs was 163 ± 9 (mean ± SD) hours, 4 ± 3 for early MV lambs, and 40 ± 6 for late MV lambs. Total injury scores at 121 days were 1.7 ± 2.1 for AP vs. 5.5 ± 1.6 for MV (p = 0.02). Using immunofluorescence, double-positive tip area fraction at 121 days was 0.017 ± 0.011 in AP lungs compared with 0.003 ± 0.003 in MV lungs (p < 0.001) and 0.009 ± 0.005 in TC lungs. At 128 days, double-positive tip area fraction was 0.012 ± 0.007 in AP lungs compared with 0.004 ± 0.004 in MV lungs (p < 0.001) and 0.016 ± 0.009 in TC lungs. The AP is protective against lung injury and promotes lung development compared with mechanical ventilation in premature lambs.

Full Text

Duke Authors

Cited Authors

  • Coughlin, MA; Werner, NL; Church, JT; Perkins, EM; Bryner, BS; Barks, JD; Bentley, JK; Hershenson, MB; Rabah, R; Bartlett, RH; Mychaliska, GB

Published In

Volume / Issue

  • 65 / 7

Start / End Page

  • 690 - 697

PubMed ID

  • 30585874

Pubmed Central ID

  • 30585874

Electronic International Standard Serial Number (EISSN)

  • 1538-943X

Digital Object Identifier (DOI)

  • 10.1097/MAT.0000000000000939

Language

  • eng

Conference Location

  • United States