Skip to main content
Journal cover image

Investigation of the conserved reentrant membrane helix in the monotopic phosphoglycosyl transferase superfamily supports key molecular interactions with polyprenol phosphate substrates.

Publication ,  Journal Article
Entova, S; Guan, Z; Imperiali, B
Published in: Arch Biochem Biophys
October 30, 2019

Long-chain polyprenol phosphates feature in membrane-associated glycoconjugate biosynthesis pathways across domains of life. These unique amphiphilic molecules are best known as substrates of polytopic membrane proteins, including polyprenol-phosphate phosphoglycosyl and glycosyl transferases, and as components of more complex substrates. The linear polyprenols are constrained by double bond geometry and lend themselves well to interactions with polytopic membrane proteins, in which multiple transmembrane helices form a rich landscape for interactions. Recently, a new superfamily of monotopic phosphoglycosyl transferase enzymes has been identified that interacts with polyprenol phosphate substrates via a single reentrant membrane helix. Intriguingly, despite the dramatic differences in their membrane-interaction domains, both polytopic and monotopic enzymes similarly favor a unique cis/trans geometry in their polyprenol phosphate substrates. Herein, we present a multipronged biochemical and biophysical study of PglC, a monotopic phosphoglycosyl transferase that catalyzes the first membrane-committed step in N-linked glycoprotein biosynthesis in Campylobacter jejuni. We probe the significance of polyprenol phosphate geometry both in mediating substrate binding to PglC and in modulating the local membrane environment. Geometry is found to be important for binding to PglC; a conserved proline residue in the reentrant membrane helix is determined to drive polyprenol phosphate recognition and specificity. Pyrene fluorescence studies show that polyprenol phosphates at physiologically-relevant levels increase the disorder of the local lipid bilayer; however, this effect is confined to polyprenol phosphates with specific isoprene geometries. The molecular insights from this study may shed new light on the interactions of polyprenol phosphates with diverse membrane-associated proteins in glycoconjugate biosynthesis.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Arch Biochem Biophys

DOI

EISSN

1096-0384

Publication Date

October 30, 2019

Volume

675

Start / End Page

108111

Location

United States

Related Subject Headings

  • Transferases (Other Substituted Phosphate Groups)
  • Substrate Specificity
  • Protein Conformation
  • Protein Binding
  • Polyprenols
  • Membrane Lipids
  • Membrane Fluidity
  • Conserved Sequence
  • Campylobacter jejuni
  • Biochemistry & Molecular Biology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Journal cover image

Published In

Arch Biochem Biophys

DOI

EISSN

1096-0384

Publication Date

October 30, 2019

Volume

675

Start / End Page

108111

Location

United States

Related Subject Headings

  • Transferases (Other Substituted Phosphate Groups)
  • Substrate Specificity
  • Protein Conformation
  • Protein Binding
  • Polyprenols
  • Membrane Lipids
  • Membrane Fluidity
  • Conserved Sequence
  • Campylobacter jejuni
  • Biochemistry & Molecular Biology