Architecting a differentially private SQL engine

Conference Paper

© 2019 Conference on Innovative Data Systems Research (CIDR). All rights reserved. In recent years, differential privacy (DP) has emerged as the state-of-the-art for privately analyzing sensitive data. Despite its wide acceptance in the academic community and much work on differentially private algorithm design, there is surprisingly little work on building database systems that allow differentially private query answering using high level, declarative languages like SQL. The lack of such systems has limited the adoption of differential privacy in real-world applications. In this paper, we propose PRIVSQL, a system architecture for supporting SQL query answering under differential privacy and identify a set of components that can be independently optimized. While there is a mature class of solutions for some components, there is little or no work for others. Our preliminary implementation can support a richer class of SQL queries than a state of the art competitor, with accuracy that is as much as 7000× better.

Duke Authors

Cited Authors

  • Kotsogiannis, I; Tao, Y; Machanavajjhala, A; Miklau, G; Hay, M

Published Date

  • January 1, 2019

Published In

  • Cidr 2019 9th Biennial Conference on Innovative Data Systems Research

Citation Source

  • Scopus