Maximum Likelihood Signal Extraction Method Applied to 3.4 years of CoGeNT Data

Journal Article

CoGeNT has taken data for over 3 years, with 1136 live days of data accumulated as of April 23, 2013. We report on the results of a maximum likelihood analysis to extract any possible dark matter signal present in the collected data. The maximum likelihood signal extraction uses 2-dimensional probability density functions (PDFs) to characterize the anticipated variations in dark matter interaction rates for given observable nuclear recoil energies during differing periods of the Earth's annual orbit around the Sun. Cosmogenic and primordial radioactivity backgrounds are characterized by their energy signatures and in some cases decay half-lives. A third parameterizing variable -- pulse rise-time -- is added to the likelihood analysis to characterize slow rising pulses described in prior analyses. The contribution to each event category is analyzed for various dark matter signal hypotheses including a dark matter standard halo model and a case with free oscillation parameters (i.e., amplitude, period, and phase). The best-fit dark matter signal is in close proximity to previously reported results. We find that the significance of the extracted dark matter signal remains well below evidentiary at 1.7 $\sigma$.

Full Text

Duke Authors

Cited Authors

  • Aalseth, CE; Barbeau, PS; Leon, JD; Fast, JE; Hossbach, TW; Knecht, A; Kos, MS; Marino, MG; Miley, HS; Miller, ML; Orrell, JL

Published Date

  • January 23, 2014