Application of Cobalt/Peracetic Acid to Degrade Sulfamethoxazole at Neutral Condition: Efficiency and Mechanisms.

Journal Article (Journal Article)

An advanced oxidation process of combining cobalt and peracetic acid (Co/PAA) was developed to degrade sulfamethoxazole (SMX) in this study. The formed acetylperoxy radical (CH3 CO3 ) through the activation of PAA by Co (Co2+ ) was the dominant radical responsible for SMX degradation, and acetoxyl radical (CH3 CO2 ) might also have played a role. The efficient redox cycle of Co3+ /Co2+ allows good removal efficiency of SMX even at quite low dosage of Co (<1 μM). The presence of H2 O2 in the Co/PAA process has a negative effect on the degradation of SMX due to the competition for reactive radicals. The SMX degradation in the Co/PAA process is pH dependent, and the optimum reaction pH is near-neutral. Humic acid and HCO3 - can inhibit SMX degradation in the Co/PAA process, while the presence of Cl- plays a little role in the degradation of SMX in this system. Although transformation products of SMX in the Co/PAA system show higher acute toxicity, the low Co dose and SMX concentration in aquatic solution can efficiently weaken the acute toxicity. After reaction in the Co/PAA process, numerous carbon sources that could be provided for bacteria and algae growth can be produced, suggesting that the proposed Co/PAA process has good potential when combined with the biotreatment processes.

Full Text

Duke Authors

Cited Authors

  • Wang, Z; Wang, J; Xiong, B; Bai, F; Wang, S; Wan, Y; Zhang, L; Xie, P; Wiesner, MR

Published Date

  • January 2020

Published In

Volume / Issue

  • 54 / 1

Start / End Page

  • 464 - 475

PubMed ID

  • 31763831

Electronic International Standard Serial Number (EISSN)

  • 1520-5851

International Standard Serial Number (ISSN)

  • 0013-936X

Digital Object Identifier (DOI)

  • 10.1021/acs.est.9b04528


  • eng