Alternative polyadenylation of mRNA and its role in cancer.
Journal Article (Journal Article;Review)
Alternative polyadenylation (APA) is a molecular process that generates diversity at the 3' end of RNA polymerase II transcripts from over 60% of human genes. APA is derived from the existence of multiple polyadenylation signals (PAS) within the same transcript, and results in the differential inclusion of sequence information at the 3' end. While APA can occur between two PASs allowing for generation of transcripts with distinct coding potential from a single gene, most APA occurs within the untranslated region (3'UTR) and changes the length and content of these non-coding sequences. APA within the 3'UTR can have tremendous impact on its regulatory potential of the mRNA through a variety of mechanisms, and indeed this layer of gene expression regulation has profound impact on processes vital to cell growth and development. Recent studies have particularly highlighted the importance of APA dysregulation in cancer onset and progression. Here, we review the current knowledge of APA and its impacts on mRNA stability, translation, localization and protein localization. We also discuss the implications of APA dysregulation in cancer research and therapy.
Full Text
Duke Authors
Cited Authors
- Yuan, F; Hankey, W; Wagner, EJ; Li, W; Wang, Q
Published Date
- January 2021
Published In
Volume / Issue
- 8 / 1
Start / End Page
- 61 - 72
PubMed ID
- 33569514
Pubmed Central ID
- PMC7859462
Electronic International Standard Serial Number (EISSN)
- 2352-3042
Digital Object Identifier (DOI)
- 10.1016/j.gendis.2019.10.011
Language
- eng
Conference Location
- China