Computer aided prediction of breast implant rupture based on mammographic findings

Conference Paper

A computer aided diagnostic system has been developed to predict the status of a breast implant (intact/ruptured) based on mammographic findings. Mammograms were obtained from 112 patients who presented for surgical removal of breast implants. Findings were recorded by radiologists for each patient. Of these 112 cases, 77 were ruptured while 35 were intact at the time of surgery. An artificial neural network (ANN) was trained to output the implant status when given the mammographic findings as inputs. The ANN was a backpropagation network with nine inputs, one hidden layer with 4 nodes, and one output node (implant status). The network was trained using the round-robin technique and evaluated using ROC analysis. The network performed well with an ROC area of 0.84. This was better than the radiologists's performance with sensitivity of 0.67 and specificity of 0.72. At a sensitivity of 0.67 (to match the radiologists), the network had a specificity of 0.89. At a specificity of 0.72 (to match the radiologists), the network had a sensitivity of 0.78. An ANN has been developed which demonstrates encouraging diagnostic performance for predicting the status of breast implants from mammographic findings.

Full Text

Duke Authors

Cited Authors

  • Floyd, CE; Soo, MS; Tourassi, GD; Kornguth, PJ

Published Date

  • May 12, 1995

Published In

Volume / Issue

  • 2434 /

Start / End Page

  • 471 - 477

Electronic International Standard Serial Number (EISSN)

  • 1996-756X

International Standard Serial Number (ISSN)

  • 0277-786X

Digital Object Identifier (DOI)

  • 10.1117/12.208718

Citation Source

  • Scopus