Machine Learning and Cochlear Implantation-A Structured Review of Opportunities and Challenges.

Published

Journal Article (Review)

OBJECTIVE: The use of machine learning technology to automate intellectual processes and boost clinical process efficiency in medicine has exploded in the past 5 years. Machine learning excels in automating pattern recognition and in adapting learned representations to new settings. Moreover, machine learning techniques have the advantage of incorporating complexity and are free from many of the limitations of traditional deterministic approaches. Cochlear implants (CI) are a unique fit for machine learning techniques given the need for optimization of signal processing to fit complex environmental scenarios and individual patients' CI MAPping. However, there are many other opportunities where machine learning may assist in CI beyond signal processing. The objective of this review was to synthesize past applications of machine learning technologies for pediatric and adult CI and describe novel opportunities for research and development. DATA SOURCES: The PubMed/MEDLINE, EMBASE, Scopus, and ISI Web of Knowledge databases were mined using a directed search strategy to identify the nexus between CI and artificial intelligence/machine learning literature. STUDY SELECTION: Non-English language articles, articles without an available abstract or full-text, and nonrelevant articles were manually appraised and excluded. Included articles were evaluated for specific machine learning methodologies, content, and application success. DATA SYNTHESIS: The database search identified 298 articles. Two hundred fifty-nine articles (86.9%) were excluded based on the available abstract/full-text, language, and relevance. The remaining 39 articles were included in the review analysis. There was a marked increase in year-over-year publications from 2013 to 2018. Applications of machine learning technologies involved speech/signal processing optimization (17; 43.6% of articles), automated evoked potential measurement (6; 15.4%), postoperative performance/efficacy prediction (5; 12.8%), and surgical anatomy location prediction (3; 7.7%), and 2 (5.1%) in each of robotics, electrode placement performance, and biomaterials performance. CONCLUSION: The relationship between CI and artificial intelligence is strengthening with a recent increase in publications reporting successful applications. Considerable effort has been directed toward augmenting signal processing and automating postoperative MAPping using machine learning algorithms. Other promising applications include augmenting CI surgery mechanics and personalized medicine approaches for boosting CI patient performance. Future opportunities include addressing scalability and the research and clinical communities' acceptance of machine learning algorithms as effective techniques.

Full Text

Cited Authors

  • Crowson, MG; Lin, V; Chen, JM; Chan, TCY

Published Date

  • January 2020

Published In

Volume / Issue

  • 41 / 1

Start / End Page

  • e36 - e45

PubMed ID

  • 31644477

Pubmed Central ID

  • 31644477

Electronic International Standard Serial Number (EISSN)

  • 1537-4505

Digital Object Identifier (DOI)

  • 10.1097/MAO.0000000000002440

Language

  • eng

Conference Location

  • United States