Analysis of alternative pathways for reducing nitrogen oxide emissions.

Journal Article (Journal Article)

Unlabelled

Strategies for reducing tropospheric ozone (O3) typically include modifying combustion processes to reduce the formation of nitrogen oxides (NOx) and applying control devices that remove NOx from the exhaust gases of power plants, industrial sources and vehicles. For portions of the U.S., these traditional controls may not be sufficient to achieve the National Ambient Air Quality Standard for ozone. We apply the MARKet ALlocation (MARKAL) energy system model in a sensitivity analysis to explore whether additional NOx reductions can be achieved through extensive electrification of passenger vehicles, adoption of energy efficiency and conservation measures within buildings, and deployment of wind and solar power in the electric sector. Nationally and for each region of the country, we estimate the NOx implications of these measures. Energy efficiency and renewable electricity are shown to reduce NOx beyond traditional controls. Wide-spread light duty vehicle electrification produces varied results, with NOx increasing in some regions and decreasing in others. However, combining vehicle electrification with renewable electricity reduces NOx in all regions.

Implications

State governments are charged with developing plans that demonstrate how air quality standards will be met and maintained. The results presented here provide an indication of the national and regional NOx reductions available beyond traditional controls via extensive adoption of energy efficiency, renewable electricity, and vehicle electrification.

Full Text

Duke Authors

Cited Authors

  • Loughlin, DH; Kaufman, KR; Lenox, CS; Hubbell, BJ

Published Date

  • September 2015

Published In

Volume / Issue

  • 65 / 9

Start / End Page

  • 1083 - 1093

PubMed ID

  • 26091070

Electronic International Standard Serial Number (EISSN)

  • 2162-2906

International Standard Serial Number (ISSN)

  • 1096-2247

Digital Object Identifier (DOI)

  • 10.1080/10962247.2015.1062440

Language

  • eng