Skip to main content
construction release_alert
Scholars@Duke will be undergoing maintenance April 11-15. Some features may be unavailable during this time.
cancel
Journal cover image

Highly photostable fluorescent labeling of proteins in live cells using exchangeable coiled coils heterodimerization.

Publication ,  Journal Article
Perfilov, MM; Gurskaya, NG; Serebrovskaya, EO; Melnikov, PA; Kharitonov, SL; Lewis, TR; Arshavsky, VY; Baklaushev, VP; Mishin, AS; Lukyanov, KA
Published in: Cell Mol Life Sci
November 2020

Fluorescent proteins are commonly used to label target proteins in live cells. However, the conventional approach based on covalent fusion of targeted proteins with fluorescent protein probes is limited by the slow rate of fluorophore maturation and irretrievable loss of fluorescence due to photobleaching. Here, we report a genetically encoded protein labeling system utilizing transient interactions of small, 21-28 residues-long helical protein tags (K/E coils, KEC). In this system, a protein of interest, covalently tagged with a single coil, is visualized through binding to a cytoplasmic fluorescent protein carrying a complementary coil. The reversible heterodimerization of KECs, whose affinity can be tuned in a broad concentration range from nanomolar to micromolar, allows continuous exchange and replenishment of the tag bound to a targeted protein with the entire cytosolic pool of soluble fluorescent coils. We found that, under conditions of partial illumination of living cells, the photostability of labeling with KECs exceeds that of covalently fused fluorescent probes by approximately one order of magnitude. Similarly, single-molecule localization microscopy with KECs provided higher labeling density and allowed a much longer duration of imaging than with conventional fusion to fluorescent proteins. We also demonstrated that this method is well suited for imaging newly synthesized proteins, because the labeling efficiency by KECs is not dependent on the rate of fluorescent protein maturation. In conclusion, KECs can be used to visualize various target proteins which are directly exposed to the cytosol, thereby enabling their advanced characterization in time and space.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Cell Mol Life Sci

DOI

EISSN

1420-9071

Publication Date

November 2020

Volume

77

Issue

21

Start / End Page

4429 / 4440

Location

Switzerland

Related Subject Headings

  • Staining and Labeling
  • Rats
  • Proteins
  • Protein Multimerization
  • Photolysis
  • Optical Imaging
  • Microscopy, Fluorescence
  • Mice
  • Luminescent Proteins
  • Humans
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Perfilov, M. M., Gurskaya, N. G., Serebrovskaya, E. O., Melnikov, P. A., Kharitonov, S. L., Lewis, T. R., … Lukyanov, K. A. (2020). Highly photostable fluorescent labeling of proteins in live cells using exchangeable coiled coils heterodimerization. Cell Mol Life Sci, 77(21), 4429–4440. https://doi.org/10.1007/s00018-019-03426-5
Perfilov, Maxim M., Nadya G. Gurskaya, Ekaterina O. Serebrovskaya, Pavel A. Melnikov, Sergey L. Kharitonov, Tylor R. Lewis, Vadim Y. Arshavsky, Vladimir P. Baklaushev, Alexander S. Mishin, and Konstantin A. Lukyanov. “Highly photostable fluorescent labeling of proteins in live cells using exchangeable coiled coils heterodimerization.Cell Mol Life Sci 77, no. 21 (November 2020): 4429–40. https://doi.org/10.1007/s00018-019-03426-5.
Perfilov MM, Gurskaya NG, Serebrovskaya EO, Melnikov PA, Kharitonov SL, Lewis TR, et al. Highly photostable fluorescent labeling of proteins in live cells using exchangeable coiled coils heterodimerization. Cell Mol Life Sci. 2020 Nov;77(21):4429–40.
Perfilov, Maxim M., et al. “Highly photostable fluorescent labeling of proteins in live cells using exchangeable coiled coils heterodimerization.Cell Mol Life Sci, vol. 77, no. 21, Nov. 2020, pp. 4429–40. Pubmed, doi:10.1007/s00018-019-03426-5.
Perfilov MM, Gurskaya NG, Serebrovskaya EO, Melnikov PA, Kharitonov SL, Lewis TR, Arshavsky VY, Baklaushev VP, Mishin AS, Lukyanov KA. Highly photostable fluorescent labeling of proteins in live cells using exchangeable coiled coils heterodimerization. Cell Mol Life Sci. 2020 Nov;77(21):4429–4440.
Journal cover image

Published In

Cell Mol Life Sci

DOI

EISSN

1420-9071

Publication Date

November 2020

Volume

77

Issue

21

Start / End Page

4429 / 4440

Location

Switzerland

Related Subject Headings

  • Staining and Labeling
  • Rats
  • Proteins
  • Protein Multimerization
  • Photolysis
  • Optical Imaging
  • Microscopy, Fluorescence
  • Mice
  • Luminescent Proteins
  • Humans