Power spectrum analysis for optical tweezers. II: Laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth

Journal Article (Journal Article)

In a typical optical tweezers detection system, the position of a trapped object is determined from laser light impinging on a quadrant photodiode. When the laser is infrared and the photodiode is of silicon, they can act together as an unintended low-pass filter. This parasitic effect is due to the high transparency of silicon to near-infrared light. A simple model that accounts for this phenomenon [Berg-Sørensen et al, J. Appl. Phys. 93, 3167 (2003)] is here solved for frequencies up to 100 kHz and for laser wavelengths between 750 and 1064 nm. The solution is applied to experimental data in the same range, and is demonstrated to give this detection system of optical tweezers a bandwidth, accuracy, and precision that are limited only by the data acquisition board's bandwidth and bandpass ripples, here 96.7 kHz and 0.005 dB, respectively. © 2006 American Institute of Physics.

Full Text

Duke Authors

Cited Authors

  • Berg-Sørensen, K; Peterman, EJG; Weber, T; Schmidt, CF; Flyvbjerg, H

Published Date

  • July 11, 2006

Published In

Volume / Issue

  • 77 / 6

International Standard Serial Number (ISSN)

  • 0034-6748

Digital Object Identifier (DOI)

  • 10.1063/1.2204589

Citation Source

  • Scopus