Skip to main content
Journal cover image

Lumbar Myeloid Cell Trafficking into Locomotor Networks after Thoracic Spinal Cord Injury.

Publication ,  Journal Article
Hansen, CN; Norden, DM; Faw, TD; Deibert, R; Wohleb, ES; Sheridan, JF; Godbout, JP; Basso, DM
Published in: Exp Neurol
August 2016

Spinal cord injury (SCI) promotes inflammation along the neuroaxis that jeopardizes plasticity, intrinsic repair and recovery. While inflammation at the injury site is well-established, less is known within remote spinal networks. The presence of bone marrow-derived immune (myeloid) cells in these areas may further impede functional recovery. Previously, high levels of the gelatinase, matrix metalloproteinase-9 (MMP-9) occurred within the lumbar enlargement after thoracic SCI and impeded activity-dependent recovery. Since SCI-induced MMP-9 potentially increases vascular permeability, myeloid cell infiltration may drive inflammatory toxicity in locomotor networks. Therefore, we examined neurovascular reactivity and myeloid cell infiltration in the lumbar cord after thoracic SCI. We show evidence of region-specific recruitment of myeloid cells into the lumbar but not cervical region. Myeloid infiltration occurred with concomitant increases in chemoattractants (CCL2) and cell adhesion molecules (ICAM-1) around lumbar vasculature 24h and 7days post injury. Bone marrow GFP chimeric mice established robust infiltration of bone marrow-derived myeloid cells into the lumbar gray matter 24h after SCI. This cell infiltration occurred when the blood-spinal cord barrier was intact, suggesting active recruitment across the endothelium. Myeloid cells persisted as ramified macrophages at 7days post injury in parallel with increased inhibitory GAD67 labeling. Importantly, macrophage infiltration required MMP-9.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Exp Neurol

DOI

EISSN

1090-2430

Publication Date

August 2016

Volume

282

Start / End Page

86 / 98

Location

United States

Related Subject Headings

  • Time Factors
  • Spinal Cord Injuries
  • Spinal Cord
  • Sacrococcygeal Region
  • Neurology & Neurosurgery
  • Myeloid Cells
  • Mice, Transgenic
  • Mice, Inbred C57BL
  • Mice
  • Matrix Metalloproteinase 9
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Hansen, C. N., Norden, D. M., Faw, T. D., Deibert, R., Wohleb, E. S., Sheridan, J. F., … Basso, D. M. (2016). Lumbar Myeloid Cell Trafficking into Locomotor Networks after Thoracic Spinal Cord Injury. Exp Neurol, 282, 86–98. https://doi.org/10.1016/j.expneurol.2016.05.019
Hansen, Christopher N., Diana M. Norden, Timothy D. Faw, Rochelle Deibert, Eric S. Wohleb, John F. Sheridan, Jonathan P. Godbout, and D Michele Basso. “Lumbar Myeloid Cell Trafficking into Locomotor Networks after Thoracic Spinal Cord Injury.Exp Neurol 282 (August 2016): 86–98. https://doi.org/10.1016/j.expneurol.2016.05.019.
Hansen CN, Norden DM, Faw TD, Deibert R, Wohleb ES, Sheridan JF, et al. Lumbar Myeloid Cell Trafficking into Locomotor Networks after Thoracic Spinal Cord Injury. Exp Neurol. 2016 Aug;282:86–98.
Hansen, Christopher N., et al. “Lumbar Myeloid Cell Trafficking into Locomotor Networks after Thoracic Spinal Cord Injury.Exp Neurol, vol. 282, Aug. 2016, pp. 86–98. Pubmed, doi:10.1016/j.expneurol.2016.05.019.
Hansen CN, Norden DM, Faw TD, Deibert R, Wohleb ES, Sheridan JF, Godbout JP, Basso DM. Lumbar Myeloid Cell Trafficking into Locomotor Networks after Thoracic Spinal Cord Injury. Exp Neurol. 2016 Aug;282:86–98.
Journal cover image

Published In

Exp Neurol

DOI

EISSN

1090-2430

Publication Date

August 2016

Volume

282

Start / End Page

86 / 98

Location

United States

Related Subject Headings

  • Time Factors
  • Spinal Cord Injuries
  • Spinal Cord
  • Sacrococcygeal Region
  • Neurology & Neurosurgery
  • Myeloid Cells
  • Mice, Transgenic
  • Mice, Inbred C57BL
  • Mice
  • Matrix Metalloproteinase 9